Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the required data from Everhour. Navigate to the reporting section in Everhour and choose the specific data you need. Use the export feature to download the data in CSV or Excel format, as these are common formats that are easy to manipulate and import into other systems.
Open the exported file using a spreadsheet application like Microsoft Excel or Google Sheets. Examine the data for any inconsistencies or errors and ensure all data fields are correctly formatted. You may need to adjust column headers or data types to align with Snowflake’s table schema.
If you haven’t already, set up a Snowflake account and create a virtual warehouse. Snowflake provides a straightforward web-based interface for setting up your account and managing warehouses. Ensure your virtual warehouse is properly sized to handle the data load.
Define the schema for the table in Snowflake where you will import the data. Using the Snowflake web interface or SQL editor, write a CREATE TABLE statement that matches the structure of your cleaned and prepared data file. Ensure data types in Snowflake align with those in your exported file to prevent import errors.
Convert your cleaned and prepared data file into a format compatible with Snowflake, such as CSV. Ensure the file encoding is UTF-8, and if using CSV, that it adheres to standard CSV formatting rules like correct delimiter usage (commas for CSV), and proper escaping of special characters.
Install SnowSQL, Snowflake’s command-line client. Use it to upload your data file to a Snowflake stage (temporary storage). From there, execute a COPY INTO command to load the data from the stage into the Snowflake table you created. This process involves specifying the file format and the destination table.
After loading the data, verify that the import was successful. Query the Snowflake table to ensure that all rows and columns were imported correctly and that the data matches the original dataset from Everhour. Perform any necessary data validation checks to confirm data integrity.
By following these steps, you can manually move data from Everhour to Snowflake without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Everhour is a time tracking and project management tool that helps businesses and teams to manage their time more efficiently. It integrates with popular project management tools like Asana, Trello, and Basecamp, allowing users to track time spent on tasks and projects directly from those platforms. Everhour also offers features like budget tracking, invoicing, and reporting, giving businesses a comprehensive view of their time and project management. With Everhour, teams can easily collaborate, manage their workload, and stay on top of deadlines, ultimately improving productivity and profitability.
Everhour's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Everhour's API:
1. Time tracking data: This includes data related to the time spent on tasks, projects, and clients.
2. Project management data: This includes data related to projects, tasks, and subtasks, such as their status, due dates, and assignees.
3. User data: This includes data related to users, such as their name, email address, and role.
4. Billing data: This includes data related to billing, such as the amount billed, the currency used, and the payment status.
5. Reporting data: This includes data related to reports, such as the type of report, the date range, and the data included in the report.
6. Integration data: This includes data related to integrations with other tools, such as the name of the integration, the status, and the configuration settings.
Overall, Everhour's API provides a comprehensive set of data that can be used to track time, manage projects, and analyze performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





