Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the Harvest API, which allows you to programmatically retrieve data. You’ll need to obtain your API credentials from Harvest. These usually include a personal access token and an account ID. Refer to the Harvest API documentation for detailed guidance on authenticating requests.
Use a programming language such as Python or JavaScript to send HTTP GET requests to the Harvest API endpoints. Start with the endpoint that contains the data you need, such as time entries or projects. Parse the JSON response to extract the relevant data fields. Use libraries like `requests` in Python to facilitate HTTP requests and handle JSON.
Once you have the data in a usable format, transform it to match the schema of your MySQL database. This may involve reformatting dates, adapting data types, or renaming fields to align with your MySQL table structure. Ensure that the transformed data maintains its integrity and matches your database specifications.
Set up your MySQL environment by ensuring that your database and relevant tables are ready to receive the data. Use MySQL Workbench or command-line tools to create tables if they don’t already exist. Define table schemas that match the transformed data structure.
Establish a connection to your MySQL database. In Python, you can use libraries like `mysql-connector-python` or `PyMySQL`. Configure the connection parameters such as host, user, password, and database name. Test the connection to ensure it’s working before proceeding.
Write a script to insert the transformed Harvest data into your MySQL tables. Utilize SQL `INSERT` statements. If handling large datasets, consider using `executemany` to insert multiple rows at once for better efficiency. Ensure to handle exceptions and errors to maintain data integrity during the insertion process.
After the data transfer, perform a data integrity check to ensure that the data in MySQL matches your expectations. Use SQL queries to count entries, check for nulls, and verify data types. This step ensures that the data transfer was successful and complete, and allows you to correct any discrepancies promptly.
By following these steps, you can effectively move data from Harvest to a MySQL destination using only standard programming techniques and tools, without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Harvest is a provider of time tracking and online invoicing services for freelancers and small businesses. Harvest focuses on providing simple to use web-based software for professional services. Customers range from freelancers to creative services businesses, to team within Fortune 500 organizations and non-profits.
Harvest's API provides access to a wide range of data related to time tracking, invoicing, and project management. The following are the categories of data that can be accessed through Harvest's API:
1. Time tracking data: This includes information about the time spent on tasks, projects, and clients.
2. Invoicing data: This includes information about invoices, payments, and expenses.
3. Project management data: This includes information about projects, tasks, and team members.
4. Client data: This includes information about clients, contacts, and projects associated with them.
5. User data: This includes information about users, their roles, and permissions.
6. Reports data: This includes information about various reports generated by Harvest, such as time reports, expense reports, and project reports.
7. Account data: This includes information about the Harvest account, such as account settings, plan details, and billing information.
Overall, Harvest's API provides a comprehensive set of data that can be used to automate various business processes and gain insights into the performance of projects and teams.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





