

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Ensure that your Jenkins server has the necessary tools installed to interact with PostgreSQL. This includes the `psql` command-line tool. You can install it using the package manager relevant to your operating system, for example, `apt-get install postgresql-client` on Ubuntu.
Set up a Jenkins job that will execute the series of commands necessary to extract and transfer data. This job can be a Freestyle project or a Pipeline project, depending on your preference and the complexity of the tasks.
Identify the data you want to move from Jenkins. This could be logs, build artifacts, or other data generated by Jenkins jobs. Use shell commands, Jenkins environment variables, or scripts to extract this data and save it to a file format suitable for PostgreSQL (e.g., CSV).
Format the extracted data if necessary to ensure it matches the schema of the target PostgreSQL tables. You might need to use shell scripting or command-line tools like `sed` or `awk` to clean or transform the data into the right structure.
Verify that Jenkins can access your PostgreSQL database. This will require setting up network permissions and ensuring that the necessary credentials (username, password, host, database name) are available in Jenkins. Store these credentials securely using Jenkins credentials management.
Use the `psql` command within your Jenkins job to load the data into PostgreSQL. This can be done using SQL commands or the `\copy` command if you're dealing with CSV files. For example:
```bash
psql -h your_host -U your_user -d your_database -c "\copy your_table FROM 'path_to_your_file.csv' CSV HEADER"
```
Include the `psql` command in your Jenkins job configuration, ensuring it uses the stored credentials.
Once the data transfer is complete, include a step in your Jenkins job to verify that the data has been correctly transferred. This can involve running a simple count query on PostgreSQL to check the number of rows, or more complex validations depending on your requirements. You can execute verification commands using `psql` and check the output.
By following these steps, you should be able to move data from Jenkins to a PostgreSQL destination without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jenkins is an open-source automation server. It helps automate parts of software development that facilitate build, test, and deployment, continuous integration, and continuous delivery. It is a server-based system that runs in servlet containers such as Apache Tomcat. It supports version control tools including AccuRev, CVS, Subversion, Git, Mercurial, Perforce, Clear Case, and RTC, and can execute arbitrary shell scripts and Windows batch commands alongside Apache Ant, Apache Maven and etc.
Jenkins is an open-source automation server that provides a wide range of APIs to access data related to the build process. The Jenkins API provides access to various types of data, including:
1. Build Data: Information about the build process, such as build status, build duration, build logs, and build artifacts.
2. Job Data: Information about the jobs, such as job status, job configuration, job parameters, and job history.
3. Node Data: Information about the nodes, such as node status, node configuration, and node availability.
4. User Data: Information about the users, such as user details, user permissions, and user activity.
5. Plugin Data: Information about the plugins, such as plugin details, plugin configuration, and plugin compatibility.
6. System Data: Information about the Jenkins system, such as system configuration, system logs, and system health.
7. Queue Data: Information about the build queue, such as queued jobs, queue status, and queue history.
Overall, the Jenkins API provides a comprehensive set of data that can be used to monitor, analyze, and optimize the build process.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: