Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, ensure that Jenkins is properly installed and configured. You need administrative access to Jenkins to create and configure jobs. Make sure the Jenkins server has access to the internet or necessary network resources to interact with AWS services, specifically DynamoDB.
Install the AWS Command Line Interface (CLI) on the Jenkins server. AWS CLI will be used to interact with DynamoDB. Use the following command to install AWS CLI:
```bash
sudo apt-get update
sudo apt-get install awscli
```
Verify the installation by running `aws --version`.
Configure the AWS CLI with the necessary credentials to access your AWS account. Run the following command and provide your AWS Access Key ID, Secret Access Key, region, and output format:
```bash
aws configure
```
Ensure the user has permissions to write to DynamoDB tables.
In Jenkins, create a new Freestyle project or Pipeline job that will handle data extraction. For Freestyle projects, use the "Execute shell" build step to write scripts that extract data from your source (e.g., files, databases, etc.). For Pipeline jobs, use Jenkinsfile syntax to perform the extraction.
Within the Jenkins job, include a shell script to format the extracted data into a JSON format suitable for DynamoDB. This might involve transforming CSV data to JSON or any other necessary transformations. Here's a simple example of formatting:
```bash
echo '{"TableName": "yourTableName", "Item": {"ID": {"S": "123"}, "Name": {"S": "SampleName"}}}' > data.json
```
Add another build step in your Jenkins job to upload the formatted data to DynamoDB using the AWS CLI. Use the `aws dynamodb put-item` command:
```bash
aws dynamodb put-item --cli-input-json file://data.json
```
Ensure the JSON file path is correct and the IAM role/user has permission to execute `dynamodb:PutItem`.
Run the Jenkins job manually to test the entire data extraction and upload process. Check the DynamoDB table to confirm data insertion. Once confirmed, schedule the job to run automatically using Jenkins' "Build Triggers" feature, such as setting a cron job for periodic execution.
By following these steps, you can efficiently move data from Jenkins to DynamoDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jenkins is an open-source automation server. It helps automate parts of software development that facilitate build, test, and deployment, continuous integration, and continuous delivery. It is a server-based system that runs in servlet containers such as Apache Tomcat. It supports version control tools including AccuRev, CVS, Subversion, Git, Mercurial, Perforce, Clear Case, and RTC, and can execute arbitrary shell scripts and Windows batch commands alongside Apache Ant, Apache Maven and etc.
Jenkins is an open-source automation server that provides a wide range of APIs to access data related to the build process. The Jenkins API provides access to various types of data, including:
1. Build Data: Information about the build process, such as build status, build duration, build logs, and build artifacts.
2. Job Data: Information about the jobs, such as job status, job configuration, job parameters, and job history.
3. Node Data: Information about the nodes, such as node status, node configuration, and node availability.
4. User Data: Information about the users, such as user details, user permissions, and user activity.
5. Plugin Data: Information about the plugins, such as plugin details, plugin configuration, and plugin compatibility.
6. System Data: Information about the Jenkins system, such as system configuration, system logs, and system health.
7. Queue Data: Information about the build queue, such as queued jobs, queue status, and queue history.
Overall, the Jenkins API provides a comprehensive set of data that can be used to monitor, analyze, and optimize the build process.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: