

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by exporting the data from Jenkins that you want to move to TiDB. You can do this by using Jenkins' built-in capabilities to generate reports or logs. For instance, use the Jenkins CLI or REST API to extract the necessary build logs, job configurations, or custom data into a CSV or JSON format.
Once you have exported the data, ensure it is clean and formatted correctly for import into TiDB. This may involve cleaning up the data, normalizing it, and ensuring it adheres to the schema you plan to use in TiDB. You can use scripting languages like Python or shell scripts to automate this process.
Ensure that your TiDB environment is set up and running. You will need access to a TiDB server with appropriate permissions to create databases and tables. If you haven't set up TiDB yet, follow the official guide to install and configure TiDB either locally or in the cloud.
Before importing data, you need to define the schema in TiDB that matches the structure of your exported Jenkins data. Use the TiDB SQL interface to create necessary databases and tables. For example, if you exported build logs, create a table with columns that match the fields in your logs.
Convert your prepared data into SQL `INSERT` statements that can be executed against TiDB. If your data is in CSV format, you can write a script to transform each row into an SQL `INSERT` statement. Ensure that data types and formats are compatible with TiDB's requirements.
Execute the SQL `INSERT` statements against your TiDB database. You can do this manually using a SQL client connected to TiDB or automate the process with a script. Ensure that you handle any errors or conflicts that arise during the import process, such as data type mismatches or constraint violations.
After importing the data, verify that it has been transferred correctly by running queries against your TiDB tables. Check for consistency and completeness by comparing a sample of records in TiDB against the original data from Jenkins. This step ensures that the data migration was successful and that no data was lost or corrupted during the process.
By following these steps, you can effectively move data from Jenkins to TiDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jenkins is an open-source automation server. It helps automate parts of software development that facilitate build, test, and deployment, continuous integration, and continuous delivery. It is a server-based system that runs in servlet containers such as Apache Tomcat. It supports version control tools including AccuRev, CVS, Subversion, Git, Mercurial, Perforce, Clear Case, and RTC, and can execute arbitrary shell scripts and Windows batch commands alongside Apache Ant, Apache Maven and etc.
Jenkins is an open-source automation server that provides a wide range of APIs to access data related to the build process. The Jenkins API provides access to various types of data, including:
1. Build Data: Information about the build process, such as build status, build duration, build logs, and build artifacts.
2. Job Data: Information about the jobs, such as job status, job configuration, job parameters, and job history.
3. Node Data: Information about the nodes, such as node status, node configuration, and node availability.
4. User Data: Information about the users, such as user details, user permissions, and user activity.
5. Plugin Data: Information about the plugins, such as plugin details, plugin configuration, and plugin compatibility.
6. System Data: Information about the Jenkins system, such as system configuration, system logs, and system health.
7. Queue Data: Information about the build queue, such as queued jobs, queue status, and queue history.
Overall, the Jenkins API provides a comprehensive set of data that can be used to monitor, analyze, and optimize the build process.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: