

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, configure Jenkins to generate and store the data you want to transfer. This could be build results, logs, or any other data artifacts. Ensure this data is saved in a format that can be easily processed, such as CSV or JSON, in a known directory on the Jenkins server.
To transfer data from Jenkins to the MS SQL Server machine, set up a secure method like SSH or SCP if the SQL Server is on a remote machine. Ensure that the Jenkins server has the necessary permissions to access the SQL Server machine. If both are on the same machine, you can skip this step.
Create a script (e.g., in Python, PowerShell, or Bash) that runs on the Jenkins server. This script should locate the data files prepared in Step 1 and prepare them for transfer. If needed, the script can also format the data to match the database schema in MS SQL Server.
Modify the script from Step 3 to include a mechanism for transferring the data files to a directory accessible by the MS SQL Server. For remote servers, you might use `scp` or `rsync`. For local transfers, simply copy the files to the desired directory.
On the MS SQL Server, ensure that the database and table structures are set up to receive the data. Create tables with the appropriate columns and data types that match the structure of the data files. Use SQL Server Management Studio (SSMS) or a SQL script to create these tables.
Use built-in SQL Server tools like `BULK INSERT` or `OPENROWSET` to import the data into the server. You can execute these commands via SSMS or integrate them into a script for automation. Ensure that the file paths and data formats match the expected input for these commands.
Finally, automate this entire process by creating a Jenkins job that triggers the data transfer script created in Steps 3 and 4. Set this job to run on a schedule or after specific build events. This will ensure that data is regularly and reliably moved from Jenkins to MS SQL Server.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jenkins is an open-source automation server. It helps automate parts of software development that facilitate build, test, and deployment, continuous integration, and continuous delivery. It is a server-based system that runs in servlet containers such as Apache Tomcat. It supports version control tools including AccuRev, CVS, Subversion, Git, Mercurial, Perforce, Clear Case, and RTC, and can execute arbitrary shell scripts and Windows batch commands alongside Apache Ant, Apache Maven and etc.
Jenkins is an open-source automation server that provides a wide range of APIs to access data related to the build process. The Jenkins API provides access to various types of data, including:
1. Build Data: Information about the build process, such as build status, build duration, build logs, and build artifacts.
2. Job Data: Information about the jobs, such as job status, job configuration, job parameters, and job history.
3. Node Data: Information about the nodes, such as node status, node configuration, and node availability.
4. User Data: Information about the users, such as user details, user permissions, and user activity.
5. Plugin Data: Information about the plugins, such as plugin details, plugin configuration, and plugin compatibility.
6. System Data: Information about the Jenkins system, such as system configuration, system logs, and system health.
7. Queue Data: Information about the build queue, such as queued jobs, queue status, and queue history.
Overall, the Jenkins API provides a comprehensive set of data that can be used to monitor, analyze, and optimize the build process.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: