Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with Lever's API documentation. Lever provides RESTful APIs that allow you to access and retrieve data programmatically. Pay special attention to authentication methods, available endpoints, and data formats (usually JSON).
To access Lever’s data, you'll need to authenticate API requests. Typically, this involves generating an API key from the Lever dashboard. Securely store this key, as you’ll need it to authorize requests. Ensure your requests include the necessary headers such as `Authorization` with the bearer token.
Construct and execute HTTP GET requests to the relevant Lever API endpoints to fetch the data you need. Use tools like `curl` or programming languages like Python (using `requests` library) to make these requests. For example, fetch candidates data by hitting the `/candidates` endpoint.
Once you receive the JSON response from Lever, parse it to extract relevant fields. Depending on your requirements, you may need to transform the data to match your MySQL schema. Use programming languages like Python to iterate over the JSON objects and prepare the data for insertion into MySQL.
Ensure your MySQL server is running and accessible. Create a database and the necessary tables that match the structure of the data you intend to import. Use the `CREATE DATABASE` and `CREATE TABLE` SQL commands to set up the appropriate schema.
Use a programming language, such as Python, with a MySQL connector library (like `mysql-connector-python`) to insert data into your MySQL database. Construct `INSERT` SQL statements or use parameterized queries to securely and efficiently load the data into the database.
To keep your MySQL database updated with the latest data from Lever, set up a cron job or a scheduled task to repeat the data retrieval and insertion process at regular intervals. This can be done using scripts that automate the process, ensuring your data remains current without manual intervention.
By following these steps, you can effectively transfer data from Lever Hiring to a MySQL database using built-in APIs and standard programming practices, without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The Lever Hire and Lever Nurture features allow leaders to scale and grow their people pipeline and build authentic and long-lasting relationships. The lever is a leading Talent Acquisition Suite that makes it easy for talent teams to reach their hiring goals and to connect companies with top talent. Lever hire is a complete talent acquisition suite that provides all the tools needed for businesses to discover and hire the best talents.
Lever Hiring's API provides access to a wide range of data related to the hiring process. The following are the categories of data that can be accessed through the API:
1. Candidates: Information about candidates who have applied for a job, including their name, contact details, resume, and application status.
2. Jobs: Details about the job openings, including the job title, location, description, and requirements.
3. Interviews: Information about the interviews scheduled for the candidates, including the date, time, location, and interviewer details.
4. Offers: Details about the job offers made to the candidates, including the salary, benefits, and start date.
5. Users: Information about the users who have access to the Lever Hiring platform, including their name, email address, and role.
6. Teams: Details about the teams within the organization, including the team name, members, and roles.
7. Stages: Information about the different stages of the hiring process, including the names and descriptions of each stage.
8. Sources: Details about the sources from which the candidates have applied, including job boards, social media, and referrals.
Overall, Lever Hiring's API provides a comprehensive set of data that can be used to streamline the hiring process and improve the overall efficiency of the recruitment process.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





