Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before starting the data migration, familiarize yourself with Marketo's REST API. Marketo provides various endpoints to access data such as leads, campaigns, and activities. Review the API documentation to understand how to authenticate requests and the types of data you can extract.
To access Marketo's API, you need an API-only user and a role with API permissions. In Marketo, go to the Admin panel, create a new LaunchPoint service, and configure it to get a Client ID and Client Secret. This information will be used for API authentication.
Implement OAuth 2.0 to authenticate your API requests. Use the Client ID and Client Secret to request an access token from Marketo’s authentication endpoint. This token will be used in the header of your API requests to authorize data access.
Using the access token, make API requests to Marketo to extract the required data. Start by defining which data you need, such as leads or activity logs. Use the respective API endpoints to fetch the data. Ensure you handle pagination if the data set is large.
Once the data is extracted, transform it into a format compatible with MongoDB. This may involve converting data types or restructuring the JSON to match MongoDB document structure. Use scripting languages such as Python to automate this process and prepare the data for insertion.
Ensure you have a MongoDB instance running, either locally or on a server. Create a database and the necessary collections where the data from Marketo will be stored. Verify that your MongoDB is properly configured to accept connections and write operations.
Use a programming language like Python along with a MongoDB driver (such as PyMongo) to connect to your MongoDB instance. Write scripts to insert the transformed Marketo data into the appropriate collections. Ensure to handle potential errors and verify successful data insertion by querying the database.
Following these steps will guide you through the process of moving data from Marketo to MongoDB effectively without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Marketo develops the marketing automation software underlying the capabilities of inbound marketing solutions, CRM, social marketing, and other services of the same type. A powerful yet simple-to-use solution for any size company, Marketo was built by marketers for marketers, so it is designed with the needs and solutions required by real businesses in mind. Marketo aims to simplify the marketing process with an all-in-one solution that includes social marketing, event management, marketing ROI and analytics reports, CRM integration, and more.
Marketo's API provides access to a wide range of data related to marketing automation and customer engagement. The following are the categories of data that can be accessed through Marketo's API:
1. Lead data: This includes information about individual leads such as their name, email address, phone number, company, job title, and other demographic information.
2. Campaign data: This includes information about marketing campaigns such as email campaigns, social media campaigns, and other types of marketing initiatives.
3. Activity data: This includes information about the activities that leads have taken such as opening an email, clicking on a link, visiting a website, or filling out a form.
4. Analytics data: This includes information about the performance of marketing campaigns such as open rates, click-through rates, conversion rates, and other metrics.
5. Account data: This includes information about the companies that leads work for such as company size, industry, and other relevant information.
6. Custom object data: This includes information about custom objects that have been created within Marketo such as events, webinars, and other types of marketing initiatives.
Overall, Marketo's API provides access to a wealth of data that can be used to improve marketing automation and customer engagement efforts.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





