Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your OneSignal account. Navigate to the dashboard, and locate the section where you can export your data. Typically, OneSignal allows you to export data in formats like CSV or JSON. Choose the appropriate format and export the necessary data, such as user IDs, notification history, or any other relevant information you wish to transfer.
Once your data is exported, open the file using a spreadsheet program (like Excel) or a text editor (for JSON). Review the data structure to ensure it matches the fields and format required by Convex. Clean up any unnecessary fields and make any required modifications to align with Convex’s data schema.
If you haven’t already, create a new project in Convex. Sign in to your Convex account and set up a new project. Make sure to configure the database schema to match the data structure you prepared earlier. Define the necessary fields and data types that will accommodate the imported data.
Develop a script to facilitate the data transfer. Depending on your skill set, you can use a programming language like Python, JavaScript, or another preferred language. Your script should read the prepared data file and use Convex’s API to insert the data into the Convex database. This involves authenticating with Convex, and using HTTP requests to post data to the appropriate endpoints.
Before running your script, ensure that you have proper authentication set up to access the Convex API. Typically, this involves generating an API key from your Convex account and including it in your script’s HTTP requests. Check Convex’s documentation for specific instructions on API authentication.
Run your data import script to initiate the data transfer process. Monitor the execution to ensure that data is being correctly read from the file and inserted into Convex. Handle any errors or exceptions gracefully, possibly by logging them for review and correction.
After the script has completed, log into your Convex account and verify that the data has been imported correctly. Check that all expected records are present and that the data fields are correctly populated. Perform spot checks and, if necessary, query the database to confirm data integrity and completeness.
By following these steps, you can manually transfer data from OneSignal to Convex without relying on third-party connectors or integrations. Adjust the process as necessary to fit the specifics of your data and requirements.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
OneSignal is an easy procedure to increase user engagement. OneSignal is a customer messaging and engagement platform that permits businesses to provide a seamless messaging experience to create a meaningful customer. OneSignal assimilates with leading analytics, CMS, and eCommerce solutions including Segment, Amplitude, HubSpot, Mix panel, Shopify, WordPress, and many more. OneSignal generates engaging customers simply and that is the fastest, most reliable service to send push notifications, in-app messages, SMS, and emails OneSignal is a free push notification service for mobile apps.
OneSignal's API provides access to various types of data related to user engagement and push notifications. The categories of data that can be accessed through OneSignal's API are:
1. User data: This includes information about the users who have subscribed to push notifications, such as their device type, language, location, and subscription status.
2. Notification data: This includes information about the push notifications that have been sent, such as the message, title, delivery time, and click-through rate.
3. Segmentation data: This includes information about the segments that have been created to target specific groups of users, such as their behavior, preferences, and demographics.
4. A/B testing data: This includes information about the different variations of push notifications that have been tested, such as their content, timing, and frequency.
5. Analytics data: This includes information about the performance of push notifications, such as the number of impressions, clicks, conversions, and revenue generated.
Overall, OneSignal's API provides a comprehensive set of data that can be used to optimize push notification campaigns and improve user engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





