Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Pipedrive account. Navigate to the ”˜Contacts’ or ”˜Deals’ section, depending on the type of data you wish to export. Use the filtering options to select the specific data set you need. Once filtered, click on the 'Export' option, typically available in the top-right corner, and choose the format (usually CSV or Excel) for your export file.
Open the exported file using a spreadsheet program like Microsoft Excel or Google Sheets. Review the data to ensure that all necessary fields are included. Cleanse the data by removing duplicates, correcting errors, and standardizing fields to match the format required by Convex.
Before importing into Convex, review their documentation to understand the specific format requirements. Pay attention to field names, data types, and any mandatory fields that must be included. This understanding is crucial to ensure a smooth import process.
Create a mapping document that matches each field from Pipedrive to the corresponding field in Convex. This step is essential to ensure that all data is accurately transferred and appears in the correct locations within Convex.
Adjust your spreadsheet according to the mapping document. Rename columns to match Convex field names, change data formats if required (e.g., date formats), and ensure all mandatory fields are filled. Save the updated spreadsheet in a compatible format for Convex, typically CSV or Excel.
Log into your Convex account and navigate to the data import section. Select the prepared file and follow the on-screen instructions to upload it. During the import process, you'll likely have the opportunity to review the mapping and make any final adjustments. Confirm the import to transfer the data into Convex.
After the import is complete, conduct a thorough review of the data in Convex. Check for any discrepancies, missing entries, or errors. Cross-reference with the original Pipedrive data to ensure everything has been imported correctly. Make necessary corrections manually if needed to ensure data integrity.
By following these steps, you can effectively move data from Pipedrive to Convex without the use of third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pipedrive is a customer relationship management (CRM) platform built with the needs of the salesperson in mind. The data it provides helps teams and individual salespeople discover their most effective strategies to close deals and make them repeatable. The pipeline delivers detailed, accurate, timely sales reports and revenue projections that help users monitor deals, plan sales events and support financial decisions.
Pipedrive's API provides access to a wide range of data related to sales and customer relationship management. The following are the categories of data that can be accessed through Pipedrive's API:
1. Deals: Information related to deals such as deal name, deal value, deal stage, deal owner, and deal activities.
2. Contacts: Information related to contacts such as contact name, contact email, contact phone number, and contact activities.
3. Organizations: Information related to organizations such as organization name, organization address, organization phone number, and organization activities.
4. Activities: Information related to activities such as activity type, activity date, activity duration, and activity participants.
5. Users: Information related to users such as user name, user email, user role, and user activities.
6. Products: Information related to products such as product name, product price, product description, and product activities.
7. Pipelines: Information related to pipelines such as pipeline name, pipeline stages, pipeline activities, and pipeline owner.
8. Notes: Information related to notes such as note content, note date, note author, and note activities.
Overall, Pipedrive's API provides access to a comprehensive set of data that can be used to improve sales and customer relationship management processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





