Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Qualaroo account. Navigate to the survey or data you wish to export. Use the built-in export feature in Qualaroo to download your data. Typically, you can export data as a CSV or Excel file. Ensure you save this file to a location that is accessible for further processing.
Open the exported file in a spreadsheet application like Microsoft Excel or Google Sheets. Review the data to ensure it’s clean and organized. Address any inconsistencies, such as correcting data types or formatting issues, to ensure it aligns with BigQuery’s requirements. Save the cleaned data as a CSV file, which is compatible with BigQuery.
If you haven’t already, create a new project in Google Cloud Platform (GCP). Go to the GCP Console, click on "Select a project," and then "New Project." Provide a name and billing information to set it up. This project will be used to manage your BigQuery datasets and tables.
Access BigQuery within your Google Cloud Project by navigating to the BigQuery section in the GCP Console. Click on your project name, then on “Create dataset.” Provide a dataset ID and configure any settings like data location and expiration settings as needed. This dataset will house the table where you will import Qualaroo data.
Within the dataset you created, click on “Create Table.” In the “Create table from” section, select “Upload” and choose the CSV file containing your cleaned Qualaroo data. Define the schema for your table by mapping columns to the appropriate data types (e.g., STRING, INTEGER, etc.). Make sure to validate the schema to ensure data integrity.
Proceed with the table creation by clicking “Create Table.” This action will upload your CSV file to BigQuery, populating the table with the Qualaroo data. Monitor the upload process for any errors or alerts, and ensure the data is correctly imported by running a simple query to verify.
Once your data is uploaded, validate it by running SQL queries in the BigQuery editor to ensure accuracy. Check for any discrepancies or errors in the data imported. Use these initial queries to test that your data structure supports the analyses you plan to perform in BigQuery.
By following these steps, you can efficiently transfer data from Qualaroo to BigQuery without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Qualaroo is a SaaS product that helps companies gather customer insights to grow their business. Koala's mission is to help companies understand the reasons behind their customers' and prospects' decisions. Understanding why leads to better business results like increasing sales, improving web conversion rates and experience, increasing product engagement, reducing churn, and more. Qualaroo makes it possible to intelligently target interactions by time on page, pages visited, number of site visits, source citations, or any internal data.
Qualaroo's API provides access to various types of data related to user feedback and behavior. The categories of data that can be accessed through Qualaroo's API are:
1. Survey data: This includes data related to the surveys created using Qualaroo, such as survey responses, completion rates, and survey questions.
2. User behavior data: This includes data related to user behavior on a website or application, such as page views, clicks, and time spent on a page.
3. User feedback data: This includes data related to user feedback, such as comments, ratings, and suggestions.
4. Demographic data: This includes data related to user demographics, such as age, gender, location, and occupation.
5. Conversion data: This includes data related to user conversions, such as conversion rates, conversion funnels, and revenue generated.
6. A/B testing data: This includes data related to A/B testing, such as test results, variations, and statistical significance.
Overall, Qualaroo's API provides access to a wide range of data that can help businesses better understand their users and improve their products and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





