Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by manually exporting your data from Recurly. Log into your Recurly account and navigate to the "Reports" section. Choose the specific data you need to export. Most likely, you will be dealing with customer data, billing information, and subscription details. Export this data in CSV format, as it is widely supported and easy to manipulate.
Once you have your CSV files, review them to ensure that all necessary data fields are included and correctly formatted. Clean the data by removing duplicates, correcting inconsistencies, and ensuring that date and number formats are consistent. This step is crucial for maintaining data integrity when importing into Firebolt.
Log into your Firebolt account or create one if you haven't yet. Set up your Firebolt environment by creating a new database or choosing an existing one where the Recurly data will be stored. Make note of the database credentials and endpoint details, as you will need these for the data import process.
Based on the CSV files, define the schema for your tables in Firebolt. This involves creating tables that match the structure of your CSV files. Use Firebolt's SQL-based interface to define the tables, specifying column names, data types, and any primary or foreign keys.
Use a scripting language like Python or a command-line tool to convert your CSV data into SQL `INSERT` statements. This step involves reading the CSV files and generating `INSERT` commands that match the schema defined in Firebolt. Ensure that values are properly formatted to match the data types in the Firebolt tables.
Connect to your Firebolt database using the credentials and endpoint details obtained earlier. Execute the SQL `INSERT` statements generated in the previous step to import data into the Firebolt tables. This can be done using a SQL client or programmatically using a language like Python with a library like `psycopg2` or `pyfirebolt`.
Once the data is imported, perform a series of checks to verify that the data in Firebolt matches the original data exported from Recurly. This can include counting records, checking for missing values, and ensuring that key metrics and fields match expected values. Address any discrepancies by reviewing and correcting the data import process or the original data as needed.
By following these steps, you can manually move data from Recurly to Firebolt without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Recurly is an SaaS subscription billing management platform that powers over 2,000 brands, including Asana, BarkBox, Cinemark, Sling TV, and Twitch. Automating the repetitive task of sending recurring bills month after month, Recurly provides management for thousands of subscription-based businesses worldwide. Recurly is quick and easy to set up and integrate into existing systems, and sales include service support so merchants can get help as needed. Recurly is a powerful tool that reduces subscriber churn and increases business revenue.
Recurly's API provides access to a wide range of data related to subscription management and billing. The following are the categories of data that Recurly's API gives access to:
1. Accounts: Information about customer accounts, including contact details, billing information, and subscription status.
2. Subscriptions: Details about active and inactive subscriptions, including plan information, billing cycles, and renewal dates.
3. Transactions: Information about all transactions related to a customer's account, including payments, refunds, and credits.
4. Invoices: Details about all invoices generated for a customer's account, including invoice items, due dates, and payment status.
5. Plans: Information about the different subscription plans offered by a business, including pricing, features, and billing intervals.
6. Add-ons: Details about additional products or services that can be added to a subscription, including pricing and billing intervals.
7. Coupons: Information about discounts or promotions offered to customers, including coupon codes, expiration dates, and usage limits.
8. Metrics: Data related to subscription and revenue metrics, including churn rate, customer lifetime value, and monthly recurring revenue.
Overall, Recurly's API provides businesses with a comprehensive set of data to manage their subscription-based business models effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





