

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, log in to your Todoist account. Navigate to the settings or account section to find the option to export your data. Typically, Todoist allows you to export tasks in CSV or JSON format. Choose the format that best suits your needs and download the data file to your local machine.
Ensure that you have MySQL installed on your system. You can download and install MySQL from the official website if you haven't already. Launch the MySQL server and access it using a client like MySQL Workbench or the command line interface. Create a new database to store your Todoist data, using a command such as `CREATE DATABASE todoist_data;`.
Analyze the exported data file to determine the needed table structure. For example, if your data includes task names, due dates, and project names, your SQL table might include columns such as `task_id`, `task_name`, `due_date`, and `project_name`. Use a `CREATE TABLE` statement to set up this schema in your MySQL database.
Open the exported CSV or JSON file using a text editor or spreadsheet software. If it's a CSV, make sure the data is clean and formatted correctly. For JSON files, you may need to use a script (e.g., Python) to parse the data into CSV format or directly into SQL `INSERT` statements. Ensure all data is correctly aligned with your MySQL table structure.
For CSV files, use MySQL's `LOAD DATA INFILE` command to import the data directly into your table:
```
LOAD DATA INFILE '/path/to/your/data.csv'
INTO TABLE your_table_name
FIELDS TERMINATED BY ','
ENCLOSED BY '"'
LINES TERMINATED BY '\n'
IGNORE 1 ROWS;
```
If you've converted the data to SQL `INSERT` statements, execute these statements within your MySQL environment.
Once the data is imported, run several `SELECT` queries to ensure that the data in your MySQL table matches the original Todoist data. Check for any discrepancies in task names, dates, or project names. This step helps ensure that the data transfer was successful and complete.
If you anticipate needing to transfer data regularly, consider writing a script in a programming language like Python that automates the export, conversion, and import processes. This script can handle data extraction from Todoist, apply necessary transformations, and execute the data import into MySQL, saving time in the future.
By following these steps, you can manually transfer data from Todoist to a MySQL database without relying on third-party tools or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Todoist is a task management app that helps users organize and prioritize their to-do lists. It allows users to create tasks, set due dates and reminders, and categorize tasks into projects and sub-projects. The app also offers features such as labels, filters, and comments to help users stay on top of their tasks. Todoist can be accessed on multiple devices, including desktop and mobile, and can be integrated with other apps such as Google Calendar and Dropbox. With its simple and intuitive interface, Todoist is a popular choice for individuals and teams looking to increase productivity and manage their workload efficiently.
Todoist's API provides access to a wide range of data related to tasks and projects. The following are the categories of data that can be accessed through Todoist's API:
1. Tasks: This includes all the tasks that are created in Todoist, including their due dates, priorities, labels, and comments.
2. Projects: This includes all the projects that are created in Todoist, including their names, colors, and parent projects.
3. Labels: This includes all the labels that are created in Todoist, including their names and colors.
4. Filters: This includes all the filters that are created in Todoist, including their names, queries, and colors.
5. Comments: This includes all the comments that are added to tasks in Todoist, including their content and authors.
6. Users: This includes all the users who have access to the Todoist account, including their names and email addresses.
7. Collaborators: This includes all the collaborators who have access to specific projects or tasks in Todoist, including their names and email addresses.
Overall, Todoist's API provides access to a comprehensive set of data that can be used to build powerful integrations and applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: