Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the database management interface of TPLCentral. You need the necessary credentials and permissions to read data from the database. Identify the specific tables or data sets you need to export.
Use TPLCentral's native export functionality to extract data. This can often be done through SQL queries if TPLCentral uses a SQL-based database. Export the data in a commonly supported format like CSV, JSON, or XML, which you will later import into MongoDB.
Once the data is exported, ensure it is clean and well-structured. Check for any inconsistencies or errors in the data format. If required, convert the data into JSON format, as MongoDB natively supports JSON-like documents (BSON).
Ensure that you have MongoDB installed on your system, along with the MongoDB tools. These tools include `mongoimport`, which is essential for importing data into MongoDB. You can download these from the official MongoDB website if they are not already installed.
Access your MongoDB instance using the `mongo` shell or a GUI tool. Create a new database and collection that will store the imported data. Use commands like `use mydatabase` to create or switch to a database and `db.createCollection('mycollection')` to create a collection.
Use the command-line tool `mongoimport` to import your prepared data into the MongoDB collection. For example, if your data is in JSON format, use a command like:
```
mongoimport --db mydatabase --collection mycollection --file mydata.json --jsonArray
```
This command specifies the database and collection to import the data into and the file path of the data.
After the import process, verify that the data has been correctly imported into MongoDB. Use queries to inspect the data within the MongoDB shell or a GUI tool. Check for data integrity and ensure that all records from TPLCentral have been accurately transferred.
By following these steps, you can successfully move data from TPLCentral to a MongoDB destination without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
TPLcentral is a platform that provides a comprehensive solution for managing and optimizing third-party logistics (3PL) operations. It offers a range of tools and features that enable businesses to streamline their supply chain processes, improve visibility and control, and enhance collaboration with their 3PL partners. TPLcentral's cloud-based software allows users to manage inventory, orders, shipments, and billing in real-time, while also providing analytics and reporting capabilities to help businesses make data-driven decisions. The platform is designed to be user-friendly and customizable, making it suitable for businesses of all sizes and industries. Overall, TPLcentral aims to simplify and improve the 3PL experience for businesses and their partners.
TPLcentral's API provides access to a wide range of data related to shipping and logistics. The following are the categories of data that can be accessed through the API:
1. Shipment data: This includes information about the shipment such as the tracking number, carrier, origin, destination, weight, and dimensions.
2. Carrier data: This includes information about the carrier such as their name, contact information, and service offerings.
3. Rate data: This includes information about the rates charged by carriers for different shipping services.
4. Transit time data: This includes information about the estimated time it will take for a shipment to reach its destination.
5. Address validation data: This includes information about the validity and accuracy of shipping addresses.
6. Customs data: This includes information about customs regulations and requirements for international shipments.
7. Inventory data: This includes information about the availability and location of inventory items.
8. Order data: This includes information about customer orders, including order status and tracking information.
Overall, TPLcentral's API provides a comprehensive set of data that can be used to optimize shipping and logistics operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





