How to load data from Trello to ElasticSearch

Learn how to use Airbyte to synchronize your Trello data into ElasticSearch within minutes.

Summarize this article with:

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Trello connector in Airbyte

Connect to Trello or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up ElasticSearch for your extracted Trello data

Select ElasticSearch where you want to import data from your Trello source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Trello to ElasticSearch in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner

Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot

Chase Zieman

Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more

Rupak Patel

Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Trello to ElasticSearch Manually

To extract data from Trello, you need to use the Trello API. Begin by setting up a Trello account and navigating to the Trello Developer API page to generate an API key and token. These credentials will allow you to authenticate requests to Trello’s API endpoints. Use these credentials to access the data you need, such as boards, lists, and cards by making HTTP requests.

Utilize a scripting language like Python to send HTTP GET requests to the Trello API endpoints. Libraries such as `requests` can simplify this task. Structure your requests to fetch the necessary data like board IDs, list names, and card details. Parse the returned JSON data to extract relevant information needed for your Elasticsearch index.

Before sending data to Elasticsearch, you need to structure it properly. Convert the Trello data into a format that Elasticsearch can accept. This typically involves organizing your data into JSON documents where each document corresponds to a Trello card or other relevant data entity.

Install and configure an Elasticsearch instance if you haven't already. You can do this locally or on a server using Elasticsearch's official documentation. Ensure your Elasticsearch cluster is running and accessible, and determine the index and type you will use to store Trello data.

Depending on your data and how you plan to query it, you might need to transform certain fields. For instance, dates should be in a consistent format, and text fields might need to be tokenized. Use your scripting language to apply any necessary transformations to the JSON documents before indexing them in Elasticsearch.

Use Elasticsearch's REST API to index your structured JSON data. This involves sending HTTP POST requests to the desired Elasticsearch index endpoint. Ensure each document is correctly formatted and includes an ID if necessary. You can employ bulk indexing for efficiency if dealing with large datasets.

After indexing, verify the data integrity by performing sample queries in Elasticsearch to ensure data has been correctly indexed. Use Elastic's Query DSL to perform searches and aggregations on the indexed Trello data. This step helps confirm that the transformation and indexing processes were successful.

By following these steps, you can move data from Trello to Elasticsearch manually without relying on third-party connectors or integrations.

How to Sync Trello to ElasticSearch Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Trello is a web-based, Kanban-style, list-making application and is a subsidiary of Atlassian. Originally created by Fog Creek Software in 2011, it was spun out to form the basis of a separate company in 2014 and later sold to Atlassian in January 2017. The company is based in New York City.

Trello's API provides access to a wide range of data related to boards, cards, lists, members, and organizations. Here are the categories of data that Trello's API gives access to:  

- Boards: Information about boards, including their name, description, URL, and members.
- Cards: Details about individual cards, such as their name, description, due date, and attachments.
- Lists: Information about lists, including their name, position, and cards.
- Members: Data related to members, such as their name, email address, and avatar URL.
- Organizations: Details about organizations, including their name, description, and members.  

In addition to these categories, Trello's API also provides access to data related to actions, checklists, labels, and more. With this data, developers can build custom integrations and applications that interact with Trello in a variety of ways. For example, they can create custom reports, automate workflows, or build dashboards that display Trello data in real-time.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Trello to Elasticsearch as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Trello to Elasticsearch and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter