Summarize this article with:



Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting data from Bing Ads. Log into your Bing Ads account and navigate to the reports section. Generate the desired report by selecting the appropriate campaign, ad group, or other relevant metrics. Once the report is generated, download it in a CSV or Excel format. This file will serve as your source data.
Open the downloaded report and review its contents. Ensure that the data is clean and structured properly for import into Teradata. You might need to adjust column names, remove unnecessary data, or reformat date fields to match the expected format in Teradata. Save the cleaned file in a CSV format if not already done.
Ensure that you have the Teradata client software installed on your machine. You will need access to the Teradata SQL Assistant or any other tool that allows you to execute SQL queries and scripts on your Teradata database. Verify that you can connect to your Teradata instance with the correct credentials.
Using the Teradata SQL Assistant or another SQL interface, create a table in your Teradata database that aligns with the structure of your Bing Ads data. Define the table schema to match the columns in your CSV file, paying attention to data types and sizes. For example, use VARCHAR for text fields and INTEGER for numeric fields.
Transfer the CSV file to a location accessible by the Teradata server. This can be done using a secure file transfer protocol (SFTP) or by placing the file in a shared network location. Make sure appropriate permissions are set so that the Teradata server can read the file.
Use the Teradata FastLoad or Teradata SQL Assistant to load the CSV data into the Teradata table. For FastLoad, you will need to create a FastLoad script specifying the input CSV file, target table, and column mappings. Execute the script to import the data. For SQL Assistant, you can use the 'Import Data' function to upload the CSV directly.
After the data load process is complete, run validation checks to ensure the data in Teradata matches the original Bing Ads report. Verify record counts and sample data points. If discrepancies are found, investigate and resolve them. Once satisfied with the import, clean up any temporary files or scripts used during the process to maintain a tidy working environment.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Advertising is a pay-per-click (PPC) advertising platform used to display ads based on the keywords used in a user's search query. For advertisers placing a large number of ads or developers building advertising tools, the Bing Ads API provides a programmatic interface to Microsoft Advertising. Using the Bing Ads API is the most efficient way to manage many large campaigns or to integrate your marketing with other in-house systems. The Bing Ads API also supports multiple customer accounts making it easy for ad agencies to manage campaigns for many clients. Some organizations may choose a hybrid approach; using the web UI for most tasks but automating reporting or campaign optimization with the API.
Bing Ads API provides access to a wide range of data that can be used to optimize and manage advertising campaigns. The following are the categories of data that can be accessed through Bing Ads API:
1. Account data: This includes information about the account, such as account ID, name, and currency.
2. Campaign data: This includes information about the campaigns, such as campaign ID, name, budget, and status.
3. Ad group data: This includes information about the ad groups, such as ad group ID, name, and status.
4. Ad data: This includes information about the ads, such as ad ID, title, description, and status.
5. Keyword data: This includes information about the keywords, such as keyword ID, match type, bid, and status.
6. Performance data: This includes information about the performance of the campaigns, ad groups, ads, and keywords, such as impressions, clicks, conversions, and cost.
7. Targeting data: This includes information about the targeting options, such as location, device, and demographic targeting.
8. Budget data: This includes information about the budget, such as daily budget, monthly budget, and total budget.
9. Conversion data: This includes information about the conversions, such as conversion ID, name, and value.
Overall, Bing Ads API provides access to a comprehensive set of data that can be used to optimize and manage advertising campaigns effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





