Top companies trust Airbyte to centralize their Data
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
Set up a source connector to extract data from in Airbyte
Choose from one of 300+ sources where you want to import data from. This can be any API tool, cloud data warehouse, database, data lake, files, among other source types. You can even build your own source connector in minutes with our no-code connector builder.
Configure the connection in Airbyte
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Move large volumes, fast.
Change Data Capture.
Security from source to destination.
We support the CDC methods your company needs
Log-based CDC
Timestamp-based CDC
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of sources, including API tools, cloud data warehouses, lakes, databases, and files, or even custom sources you can build.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Advertising is a pay-per-click (PPC) advertising platform used to display ads based on the keywords used in a user's search query. For advertisers placing a large number of ads or developers building advertising tools, the Bing Ads API provides a programmatic interface to Microsoft Advertising. Using the Bing Ads API is the most efficient way to manage many large campaigns or to integrate your marketing with other in-house systems. The Bing Ads API also supports multiple customer accounts making it easy for ad agencies to manage campaigns for many clients. Some organizations may choose a hybrid approach; using the web UI for most tasks but automating reporting or campaign optimization with the API.
Bing Ads API provides access to a wide range of data that can be used to optimize and manage advertising campaigns. The following are the categories of data that can be accessed through Bing Ads API:
1. Account data: This includes information about the account, such as account ID, name, and currency.
2. Campaign data: This includes information about the campaigns, such as campaign ID, name, budget, and status.
3. Ad group data: This includes information about the ad groups, such as ad group ID, name, and status.
4. Ad data: This includes information about the ads, such as ad ID, title, description, and status.
5. Keyword data: This includes information about the keywords, such as keyword ID, match type, bid, and status.
6. Performance data: This includes information about the performance of the campaigns, ad groups, ads, and keywords, such as impressions, clicks, conversions, and cost.
7. Targeting data: This includes information about the targeting options, such as location, device, and demographic targeting.
8. Budget data: This includes information about the budget, such as daily budget, monthly budget, and total budget.
9. Conversion data: This includes information about the conversions, such as conversion ID, name, and value.
Overall, Bing Ads API provides access to a comprehensive set of data that can be used to optimize and manage advertising campaigns effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Advertising is a pay-per-click (PPC) advertising platform used to display ads based on the keywords used in a user's search query. For advertisers placing a large number of ads or developers building advertising tools, the Bing Ads API provides a programmatic interface to Microsoft Advertising. Using the Bing Ads API is the most efficient way to manage many large campaigns or to integrate your marketing with other in-house systems. The Bing Ads API also supports multiple customer accounts making it easy for ad agencies to manage campaigns for many clients. Some organizations may choose a hybrid approach; using the web UI for most tasks but automating reporting or campaign optimization with the API.
Bing Ads API provides access to a wide range of data that can be used to optimize and manage advertising campaigns. The following are the categories of data that can be accessed through Bing Ads API:
1. Account data: This includes information about the account, such as account ID, name, and currency.
2. Campaign data: This includes information about the campaigns, such as campaign ID, name, budget, and status.
3. Ad group data: This includes information about the ad groups, such as ad group ID, name, and status.
4. Ad data: This includes information about the ads, such as ad ID, title, description, and status.
5. Keyword data: This includes information about the keywords, such as keyword ID, match type, bid, and status.
6. Performance data: This includes information about the performance of the campaigns, ad groups, ads, and keywords, such as impressions, clicks, conversions, and cost.
7. Targeting data: This includes information about the targeting options, such as location, device, and demographic targeting.
8. Budget data: This includes information about the budget, such as daily budget, monthly budget, and total budget.
9. Conversion data: This includes information about the conversions, such as conversion ID, name, and value.
Overall, Bing Ads API provides access to a comprehensive set of data that can be used to optimize and manage advertising campaigns effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Advertising is a pay-per-click (PPC) advertising platform used to display ads based on the keywords used in a user's search query. For advertisers placing a large number of ads or developers building advertising tools, the Bing Ads API provides a programmatic interface to Microsoft Advertising. Using the Bing Ads API is the most efficient way to manage many large campaigns or to integrate your marketing with other in-house systems. The Bing Ads API also supports multiple customer accounts making it easy for ad agencies to manage campaigns for many clients. Some organizations may choose a hybrid approach; using the web UI for most tasks but automating reporting or campaign optimization with the API.
Bing Ads API provides access to a wide range of data that can be used to optimize and manage advertising campaigns. The following are the categories of data that can be accessed through Bing Ads API:
1. Account data: This includes information about the account, such as account ID, name, and currency.
2. Campaign data: This includes information about the campaigns, such as campaign ID, name, budget, and status.
3. Ad group data: This includes information about the ad groups, such as ad group ID, name, and status.
4. Ad data: This includes information about the ads, such as ad ID, title, description, and status.
5. Keyword data: This includes information about the keywords, such as keyword ID, match type, bid, and status.
6. Performance data: This includes information about the performance of the campaigns, ad groups, ads, and keywords, such as impressions, clicks, conversions, and cost.
7. Targeting data: This includes information about the targeting options, such as location, device, and demographic targeting.
8. Budget data: This includes information about the budget, such as daily budget, monthly budget, and total budget.
9. Conversion data: This includes information about the conversions, such as conversion ID, name, and value.
Overall, Bing Ads API provides access to a comprehensive set of data that can be used to optimize and manage advertising campaigns effectively.
1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.
2. Click on the "Add Source" button and select "Bing Ads" from the list of available connectors.
3. Enter a name for the connector and click "Next".
4. Enter your Bing Ads credentials, including your account ID, developer token, client ID, and client secret.
5. Click "Test Connection" to ensure that the credentials are correct and the connection is successful.
6. Once the connection is successful, select the data you want to replicate from Bing Ads and configure any additional settings, such as the replication frequency and destination.
7. Click "Create Source" to save the connector and begin replicating data from Bing Ads to your destination.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.