

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by logging into your ClickUp account and navigate to the workspace or space containing the data you need. Use the built-in export feature in ClickUp to export your data. Typically, ClickUp allows you to export data in CSV format, which is suitable for BigQuery import. Make sure to choose the appropriate data sets and export them to your local machine.
After exporting the data, review the CSV files to ensure they are structured correctly for BigQuery. This involves checking for consistent data types and removing any unnecessary columns or rows. Ensure that your CSV files are clean and formatted correctly, with a header row that can be used to create a schema in BigQuery.
If you haven't already, set up a Google Cloud Platform (GCP) project where you will host your BigQuery datasets. Go to the Google Cloud Console, create a new project, and enable the BigQuery API for this project. This will allow you to use BigQuery services within your project.
In the Google Cloud Console, navigate to the BigQuery section. Create a new dataset where you will store the ClickUp data. Make sure to name the dataset appropriately so that it reflects the nature of the data you are importing.
Before importing the CSV data, you need to define a table schema in BigQuery that matches the structure of your CSV file. You can do this by manually specifying the data types for each column in your CSV, such as STRING, INTEGER, FLOAT, etc. This step ensures that the data is imported correctly and can be queried efficiently.
Use the Google Cloud Console to upload your CSV file to the created dataset. In the BigQuery section, select "Create Table" and choose "Upload" as the source. Select the CSV file from your local machine, and choose the dataset and table you created earlier. During the upload process, apply the schema you defined in the previous step to map the CSV columns correctly.
Once the data is uploaded, verify that it has been imported correctly by running some basic queries in the BigQuery Console. Check that the number of rows matches your CSV file and that the data types are correct. This ensures that your data is ready for analysis and further processing within BigQuery.
By following these steps, you can manually transfer data from ClickUp to BigQuery without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
ClickUp is an all in one productivity platform that is a cloud-based collaboration and project management tool suitable for businesses of all sizes and industries. It is a project management tool that aims to form your business life easier. ClickUp is the perfect tool for creating & customizing beautiful Gantt charts and is used by 100,000+ teams in companies like Airbnb, Google, and Uber! ClickUp is a strong project management software designed for teams and individuals.
ClickUp's API provides access to a wide range of data related to tasks, projects, and teams. The following are the categories of data that can be accessed through ClickUp's API:
1. Tasks: Information related to individual tasks such as task name, description, due date, status, priority, and assignee.
2. Projects: Data related to projects such as project name, description, start and end dates, and project status.
3. Teams: Information related to teams such as team name, members, and permissions.
4. Time tracking: Data related to time tracking such as time spent on tasks, time entries, and time reports.
5. Custom fields: Information related to custom fields such as field name, type, and value.
6. Comments: Data related to comments on tasks such as comment text, author, and timestamp.
7. Checklists: Information related to checklists such as checklist name, items, and completion status.
8. Attachments: Data related to attachments such as attachment name, type, and URL.
9. Tags: Information related to tags such as tag name, color, and usage.
Overall, ClickUp's API provides access to a comprehensive set of data that can be used to build custom integrations and automate workflows.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: