Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
A CSV (Comma Separated Values) file is a type of plain text file that stores tabular data in a structured format. Each line in the file represents a row of data, and each value within a row is separated by a comma. CSV files are commonly used for exchanging data between different software applications, such as spreadsheets and databases. They are also used for importing and exporting data from web applications and for data analysis. CSV files can be easily opened and edited in any text editor or spreadsheet software, making them a popular choice for data storage and transfer.
CSV File gives access to various types of data in a structured format that can be easily integrated into various applications and systems.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
A CSV (Comma Separated Values) file is a type of plain text file that stores tabular data in a structured format. Each line in the file represents a row of data, and each value within a row is separated by a comma. CSV files are commonly used for exchanging data between different software applications, such as spreadsheets and databases. They are also used for importing and exporting data from web applications and for data analysis. CSV files can be easily opened and edited in any text editor or spreadsheet software, making them a popular choice for data storage and transfer.
Elasticsearch is a powerful search and analytics engine that is designed to handle large amounts of data in real-time. It is an open-source, distributed, and scalable search engine that is built on top of the Apache Lucene search library. Elasticsearch is used to search, analyze, and visualize data in real-time, making it an ideal tool for businesses and organizations that need to process large amounts of data quickly. Elasticsearch is designed to be highly scalable and can be used to index and search data across multiple servers. It is also highly customizable, allowing users to configure it to meet their specific needs. Elasticsearch is commonly used for log analysis, full-text search, and business analytics. One of the key features of Elasticsearch is its ability to handle unstructured data, such as text, images, and videos. It uses a powerful search algorithm to analyze and index this data, making it easy to search and retrieve information quickly. Elasticsearch also supports a wide range of data formats, including JSON, CSV, and XML, making it easy to integrate with other data sources. Overall, Elasticsearch is a powerful tool that can help businesses and organizations to process and analyze large amounts of data quickly and efficiently.
1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.
2. Click on the "CSV File" source connector and select "Create new connection."
3. Enter a name for your connection and click "Next."
4. In the "Configuration" tab, select the CSV file you want to connect to by clicking on the "Choose File" button and selecting the file from your local machine.
5. In the "Schema" tab, you can customize the schema of your data by selecting the appropriate data types for each column.
6. In the "Credentials" tab, enter the necessary credentials to access your CSV file. This may include a username and password or other authentication details.
7. Once you have entered your credentials, click "Test Connection" to ensure that Airbyte can successfully connect to your CSV file.
8. If the connection is successful, click "Create Connection" to save your settings and start syncing your data.
9. You can monitor the progress of your sync in the "Connections" tab and view your data in the "Destinations" tab.
1. First, navigate to the Airbyte website and log in to your account.
2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the Elasticsearch destination connector and click on it.
4. You will be prompted to enter your Elasticsearch connection details, including the host URL, port number, and any authentication credentials.
5. Once you have entered your connection details, click on the "Test" button to ensure that your connection is working properly.
6. If the test is successful, click on the "Save" button to save your Elasticsearch destination connector settings.
7. You can now use this connector to send data from your Airbyte sources to your Elasticsearch database.
8. To set up a pipeline, navigate to the "Sources" tab and select the source you want to use.
9. Click on the "Create New Connection" button and select your Elasticsearch destination connector from the list.
10. Follow the prompts to map your source data to your Elasticsearch database fields and save your pipeline.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
CSV File gives access to various types of data in a structured format that can be easily integrated into various applications and systems.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: