How to load data from CSV File to Kafka

Learn how to use Airbyte to synchronize your CSV File data into Kafka within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a CSV File connector in Airbyte

Connect to CSV File or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Kafka for your extracted CSV File data

Select Kafka where you want to import data from your CSV File source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the CSV File to Kafka in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner
Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Rupak Patel
Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync CSV File to Kafka Manually

Begin by setting up your Kafka environment. Download Apache Kafka from the official website and extract the files. Ensure you have Java installed on your system as Kafka is a Java-based application. Start the Zookeeper server using the command `bin/zookeeper-server-start.sh config/zookeeper.properties`, then start the Kafka server using `bin/kafka-server-start.sh config/server.properties`.

Before sending data to Kafka, you need to create a topic where your CSV data will be published. Use the command `bin/kafka-topics.sh --create --topic --bootstrap-server localhost:9092 --partitions 1 --replication-factor 1` to create a topic. Replace `` with a suitable name for your topic.

Ensure your CSV file is properly formatted and accessible. Each row in your CSV should represent a single record, and columns should be separated by commas. Open the CSV to verify consistency and correctness in the data types and values.

Write a script in your preferred programming language (such as Python) to read data from the CSV file. Use libraries like `csv` in Python to open and parse the CSV file. Create a function that reads each row and prepares it for sending to Kafka.

```python
import csv

def read_csv(file_path):
with open(file_path, mode='r') as file:
csv_reader = csv.reader(file)
for row in csv_reader:
yield row
```

Use a Kafka client library to send data to Kafka. In Python, you can use `kafka-python`. Install it using `pip install kafka-python`. Create a producer in your script to send each row of data to the Kafka topic established earlier.

```python
from kafka import KafkaProducer
import json

producer = KafkaProducer(bootstrap_servers='localhost:9092',
value_serializer=lambda v: json.dumps(v).encode('utf-8'))

for record in read_csv('path_to_your_csv.csv'):
producer.send('', value=record)
producer.flush()
```

After sending data, verify that it has been successfully published to the Kafka topic. Use the Kafka console consumer to read messages from your topic and ensure your data is correctly published. Run the command `bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic --from-beginning`.

Implement error handling and logging within your script to manage any issues that may arise during data processing. This includes handling exceptions during CSV reading, connectivity issues with Kafka, and unsuccessful data publication attempts. Use try-except blocks and logging libraries to ensure robust error handling and logging.

```python
import logging

logging.basicConfig(level=logging.INFO)

try:
for record in read_csv('path_to_your_csv.csv'):
producer.send('', value=record)
except Exception as e:
logging.error(f"An error occurred: {e}")
finally:
producer.flush()
producer.close()
```

This guide offers a direct and practical approach to moving data from a CSV file to Kafka without relying on third-party connectors or integrations, utilizing basic scripts and Kafka’s native capabilities.

How to Sync CSV File to Kafka Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

A CSV (Comma Separated Values) file is a type of plain text file that stores tabular data in a structured format. Each line in the file represents a row of data, and each value within a row is separated by a comma. CSV files are commonly used for exchanging data between different software applications, such as spreadsheets and databases. They are also used for importing and exporting data from web applications and for data analysis. CSV files can be easily opened and edited in any text editor or spreadsheet software, making them a popular choice for data storage and transfer.

CSV File gives access to various types of data in a structured format that can be easily integrated into various applications and systems.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up CSV File to Kafka as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from CSV File to Kafka and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter