Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by reviewing FullStory's API documentation to understand the data you can extract. Identify the endpoints you need to interact with to fetch the required data. Familiarize yourself with authentication methods and rate limits to ensure smooth data extraction.
Generate the necessary API keys or tokens from FullStory to authenticate your requests. Store these credentials securely, as they will be used to make authorized API calls. Ensure you follow any security best practices recommended by FullStory.
Develop a script using a programming language such as Python or Node.js to interact with FullStory's API. The script should handle making requests to the API, managing pagination if necessary, and collecting the data in a structured format (e.g., JSON or CSV).
Once the data is extracted, transform and clean it to match the schema required by your ClickHouse database. This step may involve data type conversions, removing unnecessary fields, or aggregating data to suit your analytical needs.
Set up your ClickHouse database and create the necessary tables to store the incoming data. Define the appropriate data types and indexes to optimize performance. Ensure that the schema aligns with the transformed data format prepared in the previous step.
Use ClickHouse's native tools to load the transformed data into the database. You can use the ClickHouse client or implement an HTTP interface for data insertion. Ensure that your data is correctly mapped to the table schema and verify the integrity of the data once it's loaded.
To maintain an up-to-date data warehouse, automate the extraction, transformation, and loading (ETL) process. Use cron jobs or task schedulers to run your scripts at regular intervals. Monitor the process for errors and implement logging to troubleshoot any issues that arise during data transfer.
By following these steps, you can efficiently move data from FullStory to ClickHouse without relying on third-party connectors or integrations, providing you with full control over the data pipeline.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Fullstory is a digital experience analytics platform that helps businesses understand how users interact with their websites and applications. It captures every user interaction, including clicks, scrolls, and keystrokes, and provides insights into user behavior, preferences, and pain points. Fullstory's features include session replay, which allows businesses to watch recordings of user sessions to identify issues and opportunities for improvement, as well as heatmaps, funnels, and conversion analytics. The platform also integrates with other tools such as Google Analytics and Salesforce to provide a comprehensive view of user behavior across the entire customer journey. Overall, Fullstory helps businesses optimize their digital experiences to improve customer satisfaction and drive business growth.
Fullstory's API provides access to a wide range of data related to user behavior on a website or application. The following are the categories of data that can be accessed through Fullstory's API:
1. Session data: This includes information about user sessions, such as session ID, start and end time, and duration.
2. Page data: This includes data related to the pages that users visit, such as page URL, title, and referrer.
3. Event data: This includes data related to user interactions with the website or application, such as clicks, form submissions, and page scrolls.
4. User data: This includes data related to user attributes, such as user ID, email address, and location.
5. Device data: This includes data related to the devices that users are accessing the website or application from, such as device type, operating system, and browser.
6. Error data: This includes data related to errors that occur on the website or application, such as error messages and stack traces.
Overall, Fullstory's API provides a comprehensive set of data that can be used to gain insights into user behavior and improve the user experience.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





