

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by thoroughly understanding FullStory's API documentation. FullStory provides APIs that allow you to extract session data. Review the API endpoints available, focusing on the ones that let you access the data you need. Ensure you have API access and the necessary authentication credentials.
If you haven't already, set up a Kafka cluster where the data will be sent. You can install Kafka on a local server or set it up on a cloud-based environment. Ensure Kafka is properly configured and running. Verify that you can create topics and consume messages to ensure everything is set up correctly.
Write a script in a programming language of your choice (e.g., Python, Node.js) to fetch data from FullStory using their API. This script should authenticate using your credentials, make HTTP GET requests to the relevant endpoints, and handle pagination if necessary. Parse the JSON responses to extract the data you need.
Once you have the data extracted, transform it into a format suitable for Kafka. This typically involves converting the data into a JSON or Avro format, as Kafka handles these well. Ensure that each record is structured properly and contains all necessary fields.
Extend your script to include a Kafka producer that sends the transformed data to a Kafka topic. Use a Kafka client library appropriate for your programming language to establish a connection to your Kafka cluster. Ensure that the data is correctly pushed into the desired topic, handling any potential errors in data sending.
To keep the data flowing, set up a cron job or use a scheduling tool to run your script at regular intervals. This will ensure that data from FullStory is continuously extracted and sent to Kafka. The frequency of the scheduling will depend on your data freshness requirements.
Implement logging within your script to track the data extraction and production process. Regularly monitor these logs to identify and fix any issues. Additionally, keep an eye on Kafka's performance and storage, ensuring that topics are being managed correctly and that there are no bottlenecks in message processing.
By following these steps, you can create a direct pipeline to move data from FullStory to Kafka without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Fullstory is a digital experience analytics platform that helps businesses understand how users interact with their websites and applications. It captures every user interaction, including clicks, scrolls, and keystrokes, and provides insights into user behavior, preferences, and pain points. Fullstory's features include session replay, which allows businesses to watch recordings of user sessions to identify issues and opportunities for improvement, as well as heatmaps, funnels, and conversion analytics. The platform also integrates with other tools such as Google Analytics and Salesforce to provide a comprehensive view of user behavior across the entire customer journey. Overall, Fullstory helps businesses optimize their digital experiences to improve customer satisfaction and drive business growth.
Fullstory's API provides access to a wide range of data related to user behavior on a website or application. The following are the categories of data that can be accessed through Fullstory's API:
1. Session data: This includes information about user sessions, such as session ID, start and end time, and duration.
2. Page data: This includes data related to the pages that users visit, such as page URL, title, and referrer.
3. Event data: This includes data related to user interactions with the website or application, such as clicks, form submissions, and page scrolls.
4. User data: This includes data related to user attributes, such as user ID, email address, and location.
5. Device data: This includes data related to the devices that users are accessing the website or application from, such as device type, operating system, and browser.
6. Error data: This includes data related to errors that occur on the website or application, such as error messages and stack traces.
Overall, Fullstory's API provides a comprehensive set of data that can be used to gain insights into user behavior and improve the user experience.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: