

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you want to migrate from your SQL Server database. You can do this using SQL Server Management Studio (SSMS) or a script. Write a SQL query to select the specific data you need, and export the results to a CSV file or JSON format, which Firestore can import directly.
Convert the exported data into a format that matches Firestore's data structure. Firestore uses a NoSQL document model, so you'll need to organize your data into collections and documents. Each row from your SQL export can be transformed into a JSON object with key-value pairs, where keys are column names and values are the respective data.
Create a Google Cloud Platform (GCP) project if you haven't already. Enable the Firestore API by navigating to the API & Services dashboard in your GCP console. Set up Firestore by choosing either Native mode or Datastore mode, depending on your application's needs.
Download and install the Google Cloud SDK to interact with your Firestore database from the command line. This will allow you to authenticate and execute commands necessary for uploading data. Follow the instructions on the Google Cloud website for your operating system to complete the installation and authentication process.
Develop a script to read your prepared JSON data and write it to Firestore. You can use a programming language like Python or Node.js, which have libraries for interacting with Firestore. For example, if using Python, install the `google-cloud-firestore` package and write a script that authenticates with your GCP project and uploads each JSON document to the appropriate Firestore collection.
Execute the script you wrote in the previous step. Ensure that your environment is authenticated with GCP. As the script runs, monitor the output for any errors or issues. Firestore provides real-time feedback on operations, so you can see whether each document was successfully uploaded.
After the upload completes, verify that the data in Firestore matches your original SQL Server data. Use the Firestore console to inspect your collections and documents. You may also write queries to check for data consistency and correctness. Ensure that all necessary data was transferred, and that the data structure in Firestore is as intended.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft SQL Server Consultants help companies choose the best business software solutions for their needs. Microsoft SQL Server Consultants help businesses resolve questions and issues, provide businesses with reliable information resources, and, ultimately, make better decisions on the software most appropriate for their unique needs. Consultants are available to help on call and can connect remotely to businesses’ computers to upgrade outdated editions of SQL servers to bring functions up to date for improved productivity.
MSSQL - SQL Server provides access to a wide range of data types, including:
1. Relational data: This includes tables, views, and stored procedures that are used to store and manipulate data in a structured format.
2. Non-relational data: This includes data that is not stored in a structured format, such as XML documents, JSON objects, and binary data.
3. Spatial data: This includes data that is related to geographic locations, such as maps, coordinates, and spatial queries.
4. Time-series data: This includes data that is related to time, such as timestamps, dates, and time intervals.
5. Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and organizational structures.
6. Machine learning data: This includes data that is used for training and testing machine learning models, such as feature vectors, labels, and performance metrics.
7. Streaming data: This includes data that is generated in real-time, such as sensor data, log files, and social media feeds.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: