

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before beginning the data transfer, familiarize yourself with NetSuite’s SuiteTalk API. SuiteTalk is a SOAP-based web service that allows you to interact with NetSuite data programmatically. Review the NetSuite SuiteTalk documentation to understand how to authenticate and perform data retrieval operations.
Set up a programming environment that supports making SOAP API calls. You can use languages such as Python, Java, or C#. Ensure you have the necessary libraries to handle SOAP requests, such as `zeep` for Python or `javax.xml.soap` for Java.
Use the SuiteTalk API to authenticate with your NetSuite account. You will need your account ID, consumer key, consumer secret, token ID, and token secret. Construct a SOAP request to obtain a session token, which will be used to make subsequent API calls. Make sure you handle authentication securely, ideally using environment variables to store sensitive credentials.
Once authenticated, use the SuiteTalk API to query the data you need from NetSuite. You can use the `search` or `searchMoreWithId` operations for larger datasets. Make sure you handle pagination if you expect a large volume of data. Convert the retrieved SOAP response into a structured format, such as JSON or CSV, for easier manipulation.
Install MySQL on your local machine or server if it’s not already installed. Create a new database and define the schema that matches the structure of the data you retrieved from NetSuite. Use SQL commands to create tables, ensuring that data types align with those from NetSuite.
Process the data retrieved from NetSuite to fit into your MySQL database schema. This may involve transforming data types, normalizing data, and cleaning any inconsistencies. Use a scripting language to automate this process, ensuring data integrity and consistency.
Write a script to insert the transformed and cleaned data into your MySQL database. Use a library like `mysql-connector-python` for Python or `JDBC` for Java to connect to your MySQL instance. Execute your insert statements in batches to optimize performance and handle any potential errors gracefully. Verify the data insertion by querying the data in MySQL and cross-checking with the original data from NetSuite.
By following these steps, you can effectively transfer data from NetSuite to MySQL without relying on third-party solutions.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
NetSuite is a comprehensive cloud-based business management suite that provides an integrated platform for managing various business processes, including financials, customer relationship management (CRM), e-commerce, inventory management, and more. It offers a unified system that eliminates data silos and enables real-time visibility across an organization. NetSuite's core features include financial management, order and billing management, supply chain and warehouse management, project management, and customer support management. With its flexible and scalable architecture, NetSuite can adapt to the unique needs of businesses across different industries and sizes. By consolidating multiple business functions into a single platform, NetSuite streamlines operations, improves efficiency, and provides actionable insights for informed decision-making.
Netsuite's API provides access to a wide range of data categories, including:
1. Financial data: This includes information related to accounting, billing, payments, and financial reporting.
2. Customer data: This includes data related to customer profiles, orders, transactions, and interactions.
3. Inventory data: This includes information related to inventory levels, stock movements, and product information.
4. Sales data: This includes data related to sales orders, quotes, and opportunities.
5. Marketing data: This includes data related to campaigns, leads, and marketing automation.
6. Support data: This includes data related to customer support cases, tickets, and resolutions.
7. Employee data: This includes data related to employee profiles, time tracking, and payroll.
8. Custom data: This includes data related to custom fields, records, and workflows that are specific to a company's unique needs.
Overall, Netsuite's API provides access to a comprehensive set of data categories that can be used to support a wide range of business processes and decision-making activities.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: