

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting your data from Smartsheets. Log in to Smartsheets, open the desired sheet, and click on "File" > "Export" > "Export to Excel" or "Export to CSV". Save the file to your local machine. CSV is preferred for streamlined data handling in the following steps.
Open the exported CSV file and ensure that the data is clean and formatted correctly. Check for any inconsistencies, such as missing headers or incorrect data types, and rectify these issues. If necessary, use spreadsheet software to clean and format your data to match the schema of your Redshift destination table.
Log in to your AWS Management Console and navigate to the S3 service. Create a new bucket (or use an existing one) to temporarily store your CSV file. Make sure the bucket is in the same region as your Redshift cluster to avoid cross-region data transfer fees. Upload the CSV file to the S3 bucket.
Ensure that your Redshift cluster is set up and running. If not, create a new Redshift cluster through the AWS Management Console. Note the cluster endpoint, database name, and any authentication credentials, as you will need these for data loading.
Create an IAM role with the necessary permissions to allow Redshift to access the S3 bucket. In the AWS Management Console, navigate to the IAM service, create a role, and attach the policy "AmazonS3ReadOnlyAccess". Next, associate this IAM role with your Redshift cluster under the cluster's "Permissions" tab.
Connect to your Redshift cluster using a SQL client like SQL Workbench/J. Use the `COPY` command to load data from the S3 bucket into the Redshift table. The basic syntax is:
```
COPY your_table_name
FROM 's3://your-bucket-name/your-file-name.csv'
IAM_ROLE 'arn:aws:iam::your-account-id:role/your-role-name'
CSV
IGNOREHEADER 1;
```
Replace placeholders with actual values. Execute the command to start the data transfer.
After loading the data, perform queries on your Redshift table to verify that the data has been transferred correctly. Check for any discrepancies or missing data by comparing sample rows against the original CSV. If issues are found, repeat the data preparation and loading steps as needed.
By following these steps, you can manually transfer data from Smartsheets to Amazon Redshift without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
A cloud-based management platform, Smartsheet empowers businesses to accomplish all things business. Smartsheet drives collaboration, supports better decision making, and accelerates innovation, enabling businesses to advance from ideation to impact in record time. Chosen by more than 70,000 brands in 190 different countries, Smartsheet simply makes business smarter—and simpler, since it integrates seamlessly with applications businesses already use from Google, Atlassian, Salesforce, Microsoft, and more.
Smartsheet's API provides access to a wide range of data types, including:
1. Sheets: Access to all sheets within a Smartsheet account, including their metadata and contents.
2. Rows: Access to individual rows within a sheet, including their metadata and contents.
3. Columns: Access to individual columns within a sheet, including their metadata and contents.
4. Cells: Access to individual cells within a sheet, including their metadata and contents.
5. Attachments: Access to all attachments associated with a sheet, row, or cell.
6. Comments: Access to all comments associated with a sheet, row, or cell.
7. Users: Access to information about users within a Smartsheet account, including their metadata and permissions.
8. Groups: Access to information about groups within a Smartsheet account, including their metadata and membership.
9. Reports: Access to all reports within a Smartsheet account, including their metadata and contents.
10. Templates: Access to all templates within a Smartsheet account, including their metadata and contents.
Overall, Smartsheet's API provides a comprehensive set of tools for accessing and manipulating data within a Smartsheet account, making it a powerful tool for developers and businesses looking to integrate Smartsheet into their workflows.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: