

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, connect to your Teradata database using a command-line tool like BTEQ or Teradata SQL Assistant. Use SQL queries to extract the required data into a file. You can export the data in a CSV format for simplicity. For example, you can use the `EXPORT REPORT` command in BTEQ to write the output to a CSV file.
Once the data is exported as a CSV file, ensure the file is formatted correctly. Check for any special characters or delimiters that might cause issues during import. Make sure that the data types are compatible with ClickHouse’s requirements, and consider normalizing any non-standard data.
Use a secure method to transfer the CSV file to the server where ClickHouse is installed. You can use tools like `scp` (secure copy protocol) or `rsync` for transferring files over the network securely. Ensure that the target directory on the ClickHouse server has the necessary permissions for the file.
Access your ClickHouse instance using the command-line client or a graphical interface. Define a table structure that matches the data schema of your CSV file. Use the `CREATE TABLE` statement to create this table. Ensure that each column in the table corresponds to the data types and structure of the CSV file.
Use the `clickhouse-client` to import the CSV data into your ClickHouse table. Use the `INSERT INTO` command with the `FORMAT CSV` option to specify that the input data is in CSV format. For example:
```
clickhouse-client --query="INSERT INTO your_table FORMAT CSV" < /path/to/your/file.csv
```
Ensure that the data types in the CSV align with the table schema in ClickHouse.
After loading the data, run some queries to verify that the data has been imported correctly. Check for any discrepancies or errors in data types and values. You can perform counts, checksums, or sample queries to ensure that the data in ClickHouse matches the source data from Teradata.
Once the data is verified, consider optimizing the table for performance. You can create additional indexes, if necessary, using ClickHouse’s indexing features like primary key or data skipping indices. Analyze the query patterns to identify which optimizations might be beneficial for your specific use case, ensuring faster retrieval of data.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: