

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Ensure you have an AWS account and the necessary permissions to create and manage resources such as S3 buckets and AWS Glue services. Log into the AWS Management Console and navigate to the S3 service to create a new S3 bucket where you will store your data.
Prepare your Teradata database for data export. Identify the tables or datasets you wish to transfer. Use SQL to export data from Teradata into a delimited format like CSV. You can execute this using Teradata's native utilities like BTEQ, FastExport, or Teradata SQL Assistant, saving the output to local storage.
Upload the exported data files to your S3 bucket. Use the AWS Management Console, AWS CLI, or AWS SDKs to upload your data from local storage to the S3 bucket. Ensure that the bucket policy and permissions allow access for AWS Glue to read these files.
Navigate to the AWS Glue service in the AWS Management Console. Create a new Glue Crawler to catalog the data in your S3 bucket. Configure the crawler to point to the S3 bucket path where your data is stored. Run the crawler to scan the data and create metadata tables in the AWS Glue Data Catalog.
Create a new ETL (Extract, Transform, Load) job in AWS Glue. Specify the source as the tables created by the Glue Crawler. Define the target as another S3 location if you need to transform the data or prepare it for further analysis. Use the built-in Glue ETL script editor if transformations are required.
Run the Glue ETL job to process the data. This job will read data from the S3 source location, perform any defined transformations, and write the output back to an S3 target location. Monitor the job for successful execution and check logs for any errors or issues that arise.
After the ETL job completes, navigate to the S3 target location and verify the data integrity. Ensure that the data is accurately transformed and stored. Confirm that the Glue Data Catalog reflects the latest metadata and that the data is accessible for future analytics or processing tasks.
By following these steps, you should be able to move data from Teradata to Amazon S3 using AWS Glue without relying on third-party solutions.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: