Frequently Asked Questions
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
LinkedIn ads helps businesses of any size achieve their goals and reach their target market. Over 850M active professionals are on LinkedIn. Target your audience them by job title, function, industry, and more.
LinkedIn Ads API provides access to a wide range of data related to LinkedIn advertising campaigns. The following are the categories of data that can be accessed through the API:
1. Ad Campaign Data: This includes data related to the performance of ad campaigns such as impressions, clicks, conversions, and spend.
2. Audience Data: This includes data related to the audience targeted in the ad campaigns such as demographics, job titles, industries, and locations.
3. Account Data: This includes data related to the LinkedIn advertising account such as account balance, billing information, and account settings.
4. Ad Creative Data: This includes data related to the ad creatives used in the campaigns such as ad formats, images, and headlines.
5. Conversion Tracking Data: This includes data related to the conversion tracking set up for the campaigns such as conversion events, conversion values, and conversion tracking tags.
6. Engagement Data: This includes data related to the engagement of the audience with the ad campaigns such as likes, comments, and shares.
7. Performance Data: This includes data related to the overall performance of the ad campaigns such as click-through rates, conversion rates, and cost per click.
This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: set it up as a source, choose a destination among 50 available off the shelf, and define which data you want to transfer and how frequently.
The most prominent ETL tools to extract data include: Airbyte, Fivetran, StitchData, Matillion, and Talend Data Integration. These ETL and ELT tools help in extracting data from various sources (APIs, databases, and more), transforming it efficiently, and loading it into a database, data warehouse or data lake, enhancing data management capabilities.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.