Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, you need to establish access to Amazon Seller Partner API. Sign up for Amazon MWS (Marketplace Web Service) and obtain your API credentials, including the Access Key ID, Secret Access Key, and Seller ID. This will allow you to authenticate your requests and access your data programmatically.
Prepare your local environment to interact with the Amazon Seller Partner API. This involves installing necessary libraries in your programming language of choice (such as Python). For Python, you might need libraries like `requests` for HTTP requests and `boto3` if you plan to use AWS SDKs.
Use the API credentials to make requests to the Amazon Seller Partner API endpoints. Identify the endpoints that correspond to the data you need, such as orders, inventory, or reports. Construct your HTTP requests to these endpoints, and handle authentication using your API credentials. Parse the JSON or XML responses to extract the data you need.
DuckDB is an in-process SQL database management system. Install DuckDB on your local machine or server. You can download the appropriate binary from the DuckDB website or install it via package managers like `pip` for Python.
Once you have fetched the data from the Amazon Seller Partner API, prepare it for insertion into DuckDB. This involves cleaning and structuring the data into tabular format, typically using a CSV file or an in-memory DataFrame. Ensure that the data types are consistent and compatible with DuckDB.
Utilize DuckDB's capabilities to load the structured data. If using Python, you can leverage DuckDB's Python API. Create a new DuckDB database file or connect to an existing one, then use SQL commands to create tables and insert the data. For CSV files, you can use DuckDB's `COPY` command to load the data directly.
After loading the data into DuckDB, ensure that the data has been correctly imported and maintains its integrity. Execute SQL queries within DuckDB to verify that the tables and data match what you retrieved from Amazon Seller Partner. Validate data types, row counts, and sample records to confirm accuracy.
By following these steps, you can effectively move data from Amazon Seller Partner to DuckDB without relying on third-party connectors or integrations, maintaining full control over the data handling process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Amazon Selling Partner’s API (SP-API) is a much-improved iteration of Amazon Marketplace Web Service (Amazon MWS) APIs. This next generation suite offers increased automation functionality, with many new features including state-of-the-art JSON-based REST API design standards and 0Auth2.0 selling partner authorization using Login with Amazon. With this generation of updates, Amazon Selling Partners continues to deliver reliable programmatic access to essential Amazon features, in the same tradition their customers have come to expect for over 10 years.
Amazon Seller Partner's API provides access to a wide range of data related to Amazon seller accounts. The API allows developers to retrieve data related to orders, products, inventory, and pricing. Here are the categories of data that the API provides access to:
1. Orders: The API provides access to order details such as order ID, order status, shipping address, payment information, and order items.
2. Products: The API provides access to product details such as product ID, product title, product description, product images, and product variations.
3. Inventory: The API provides access to inventory details such as inventory levels, inventory status, and inventory updates.
4. Pricing: The API provides access to pricing details such as product prices, discounts, and promotions.
5. Fulfillment: The API provides access to fulfillment details such as shipment tracking information, shipping labels, and fulfillment status.
6. Reports: The API provides access to various reports such as sales reports, inventory reports, and financial reports.
Overall, the Amazon Seller Partner's API provides a comprehensive set of data that can help sellers manage their Amazon business more effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





