Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start snycing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
Azure Blob Storage is a cloud-based storage solution provided by Microsoft Azure. It is designed to store large amounts of unstructured data such as text, images, videos, and audio files. Blob Storage is highly scalable and can store data of any size, from a few bytes to terabytes. It provides a cost-effective way to store and access data from anywhere in the world. Blob Storage also offers features such as data encryption, access control, and data redundancy to ensure data security and availability. It can be used for a variety of applications such as backup and disaster recovery, media storage, and data archiving.
Weaviate is an open-source, cloud-native, real-time vector search engine that allows developers to build intelligent applications with natural language processing (NLP) capabilities. It uses machine learning algorithms to understand the meaning of unstructured data and provides a semantic search engine that can retrieve relevant information from large datasets. Weaviate can be used to build chatbots, recommendation systems, and other intelligent applications that require NLP capabilities. It is designed to be scalable, flexible, and easy to use, with a RESTful API that allows developers to integrate it into their applications quickly. Weaviate is built on top of Kubernetes and can be deployed on-premises or in the cloud.
1. First, navigate to the Airbyte website and create an account.
2. Once you have logged in, click on the "Sources" tab on the left-hand side of the screen.
3. Scroll down until you find the "Azure Blob Storage" connector and click on it.
4. Click on the "Create Connection" button.
5. Enter a name for your connection and fill in the required fields, such as your Azure Blob Storage account name and access key.
6. Test the connection to ensure that it is working properly.
7. Once the connection has been successfully tested, click on the "Save & Sync" button to save your connection and begin syncing data.
8. You can then configure your sync settings, such as the frequency of syncing and which data to include.
9. Once you have configured your sync settings, click on the "Save & Sync" button again to start syncing your data from Azure Blob Storage to Airbyte.
1. First, navigate to the Weaviate destination connector on Airbyte's website.
2. Click on the "Get Started" button to begin the setup process.
3. Enter the required credentials for your Weaviate instance, including the URL, API key, and schema name.
4. Test the connection to ensure that the credentials are correct and the connection is successful.
5. Choose the tables or collections that you want to sync from your source connector to Weaviate.
6. Map the fields from your source connector to the corresponding fields in Weaviate.
7. Set up any necessary transformations or filters to ensure that the data is formatted correctly for Weaviate.
8. Schedule the sync to run at regular intervals or manually trigger it as needed.
9. Monitor the sync to ensure that the data is being transferred correctly and troubleshoot any issues that arise.
10. Once the sync is complete, verify that the data has been successfully transferred to Weaviate.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Azure Blob Storage's API provides access to various types of data, including:
1. Unstructured data: This includes any type of data that does not have a predefined data model or structure, such as text, images, videos, and audio files.
2. Structured data: This includes data that has a predefined data model or structure, such as tables, columns, and rows.
3. Semi-structured data: This includes data that has some structure, but not enough to fit into a traditional relational database, such as JSON, XML, and CSV files.
4. Metadata: This includes information about the data stored in Azure Blob Storage, such as file size, creation date, and last modified date.
5. Access control data: This includes information about who has access to the data stored in Azure Blob Storage and what level of access they have.
6. Logging data: This includes information about the activities performed on the data stored in Azure Blob Storage, such as read and write operations, and access attempts.Overall, Azure Blob Storage's API provides access to a wide range of data types, making it a versatile and flexible storage solution for various types of applications and use cases.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: