

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before you can extract data, familiarize yourself with the Breezometer API documentation. Determine the specific endpoints you need to query to obtain the desired data and understand the authentication process required to access these endpoints.
Ensure you have a Google Cloud account and have enabled the BigQuery API. Set up a new project or use an existing one. Make sure you have sufficient permissions to create datasets and tables within BigQuery.
For accessing Breezometer, you'll need an API key. Sign up on Breezometer's platform if necessary and generate an API key. For BigQuery, create a service account key from your Google Cloud Console (IAM & Admin > Service Accounts), and download the key file in JSON format. This key will be used to authenticate your application to BigQuery.
Develop a Python script (or another programming language of your choice) to query Breezometer's API. Use libraries like `requests` in Python to make HTTP requests to the API endpoints. Parse the JSON responses and store them in a suitable data structure. Handle any errors and implement retries for failed requests to ensure reliability.
Once you have the data, clean and transform it to match the schema of your BigQuery table. This may involve converting data types, handling missing values, or aggregating data. Ensure the data is in a format compatible with BigQuery, such as CSV or JSON, and ready for upload.
BigQuery can ingest data from Google Cloud Storage (GCS). Upload the transformed data file to a GCS bucket. Use the `gsutil` command-line tool or the Google Cloud SDK to transfer your data file to the cloud storage bucket, ensuring it is accessible for BigQuery ingestion.
Use the BigQuery client library in your script to load the data from GCS into a BigQuery table. Define the schema for the table if it does not already exist, and utilize the `load_table_from_uri` method to import the data. Monitor the load job for completion and handle any errors or issues that arise during the process.
By following these steps, you can effectively move data from Breezometer to BigQuery without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BreezoMeter unites big data and machine learning technology to provide intuitive, personalized information on air quality and pollen levels to companies and consumers around the world. BreezoMeter provides personalized air quality & pollen data as well as active fire alerts with worldwide coverage & accuracy down to the street level. BreezoMeter uses AI and machine learning to collect and understand data from multiple sources, including more than 47,000 sensors worldwide. Breezometer offers environmental intelligence solutions that enables businesses to lessen exposure to environmental hazards.
Breezometer's API provides access to a wide range of environmental data related to air quality. The following are the categories of data that can be accessed through the API:
1. Air Quality Index (AQI) - This is a measure of the overall air quality in a specific location.
2. Pollutants - The API provides data on various pollutants such as nitrogen dioxide, sulfur dioxide, ozone, and particulate matter.
3. Weather - The API provides real-time weather data such as temperature, humidity, wind speed, and direction.
4. Pollen - The API provides data on pollen levels in the air, which can be useful for people with allergies.
5. UV Index - The API provides data on the level of ultraviolet radiation in a specific location.
6. Health Recommendations - The API provides health recommendations based on the air quality data, such as avoiding outdoor activities or wearing a mask.
7. Historical Data - The API provides access to historical air quality data for a specific location.
Overall, Breezometer's API provides a comprehensive set of data related to air quality, weather, and health recommendations, which can be useful for a variety of applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: