Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your AWS Management Console and navigating to the S3 service. Create a new S3 bucket, ensuring that you choose a unique name and appropriate region. Adjust the permissions and bucket policies according to your data security needs, ensuring that only authorized users can access it.
Access your cart system's backend or database to export the data you wish to move to S3. Typically, this involves generating a CSV or JSON file. Look for options in your cart system's admin panel to export data, or directly query the database if you have the necessary access. Save the exported data file on your local machine or a secure server.
Install the AWS Command Line Interface (CLI) on your local machine. This tool will allow you to interact with AWS services from the command line. Follow the official AWS CLI installation guide to set it up for your operating system. Once installed, configure it by running `aws configure` and inputting your AWS Access Key, Secret Key, region, and output format.
Before transferring, ensure your data file is properly formatted and free of errors. If necessary, clean and preprocess the data to match the structure expected on S3. This might involve removing unnecessary columns or converting data types.
Use the AWS CLI to upload your data file to the S3 bucket. Navigate to the directory containing your file in the command line, then execute the upload command:
```
aws s3 cp [your-data-file] s3://[your-bucket-name]/[desired-path/]
```
Replace `[your-data-file]`, `[your-bucket-name]`, and `[desired-path/]` with your file's name, your bucket's name, and the desired location path within the bucket, respectively.
Once the upload command completes, verify that the data has been successfully uploaded. Go to your AWS S3 console, navigate to your bucket, and check that the file appears in the correct location with the expected size. You can also use the AWS CLI to list the contents of your bucket:
```
aws s3 ls s3://[your-bucket-name]/[desired-path/]
```
Finally, configure access permissions for the uploaded data. Determine who needs access to the data and adjust the bucket policies or object-level permissions accordingly. You can set permissions directly in the S3 console or use the AWS CLI to modify access policies. Ensure that security best practices are followed to protect sensitive data.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Cart.com offers an integrated, holistic approach to ecommerce, which they call ecommerce 2.0. Cart serves as Nigeria’s leading shopping community, attempting to democratize ecommerce by providing all sizes of brands ecommerce capabilities equivalent to those of the world’s largest online retailers. To fulfill their mission of putting businesses in charge of their own ecommerce journey and customer relationships, they provide software, services, and the necessary intrastructure to give even small brands the online capabilities they need to survive and grow.
Cart's API provides access to a wide range of data related to e-commerce and online shopping. The following are the categories of data that can be accessed through Cart's API:
1. Products: Information about the products available on the e-commerce platform, including their names, descriptions, prices, images, and other relevant details.
2. Orders: Details about the orders placed by customers, including the products purchased, the payment method used, and the shipping address.
3. Customers: Information about the customers who have registered on the e-commerce platform, including their names, email addresses, and shipping addresses.
4. Inventory: Data related to the availability of products in the inventory, including the stock levels and the locations where the products are stored.
5. Shipping: Information about the shipping options available to customers, including the shipping rates, delivery times, and tracking information.
6. Payments: Details about the payment methods accepted by the e-commerce platform, including credit cards, PayPal, and other payment gateways.
7. Discounts and promotions: Data related to the discounts and promotions offered by the e-commerce platform, including coupon codes, gift cards, and other special offers.
Overall, Cart's API provides a comprehensive set of data that can be used to build powerful e-commerce applications and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





