Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, log in to your Confluence account and navigate to the space or page you want to export. Use the built-in export functionality to download your data. You can export Confluence content in various formats like XML, PDF, or HTML. For data migration, XML is preferable as it is structured and easier to parse.
Once you have the XML file, you need to parse it to extract the relevant data for migration. Use a programming language like Python with libraries such as `xml.etree.ElementTree` or `lxml` to traverse the XML structure and extract the necessary content, such as page titles, content bodies, and metadata.
After extracting the data, transform it into JSON format, which is compatible with Weaviate's data model. Create a JSON object for each Confluence page or data entity, ensuring to include all relevant fields such as title, content, and any custom metadata.
If you haven't already, install and set up a Weaviate instance. You can run Weaviate locally using Docker or set it up in a cloud environment. Ensure that your Weaviate instance is running and accessible for data import.
Before importing data, define the schema in Weaviate that matches the structure of your JSON objects. Use Weaviate's schema management API to create classes and properties that correspond to the fields in your JSON data, such as `title`, `content`, and `metadata`.
With the schema in place, use Weaviate's RESTful API to import the JSON data. Write a script or use a tool like `curl` to send HTTP POST requests with your JSON objects to the Weaviate instance. Ensure each request is formatted according to Weaviate’s API specifications.
After the data import is complete, verify the integrity of the data within Weaviate. Query the Weaviate instance to check that all documents are present and correctly formatted. Ensure that the relationships and metadata have been accurately migrated by cross-referencing with the original Confluence data.
By following these steps, you can manually move data from Confluence to Weaviate without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Confluence defines your reason for being so you can form actionable business strategies and it can share performance results and customer insights with stakeholders. Confluence presents your business vision and help your team understand your strategic plan. It is your remote-friendly team workspace where knowledge and collaboration meet. Confluence is purpose-built for teams which requires a secure and reliable way to collaborate on mission-critical projects. Confluence sites are entirely protected by privacy controls and data encryption, and meet industry-verified compliance standards.
Confluence's API provides access to a wide range of data, including:
1. Pages: Confluence pages are the primary unit of content in the platform, and the API allows developers to create, read, update, and delete pages.
2. Spaces: Spaces are containers for pages and other content, and the API provides access to space metadata, permissions, and other settings.
3. Users and groups: The API allows developers to manage users and groups, including creating, updating, and deleting them.
4. Comments: Confluence pages can have comments, and the API provides access to comment metadata and content.
5. Attachments: Pages can have attachments, such as images or documents, and the API allows developers to manage attachments.
6. Labels: Labels are used to categorize content in Confluence, and the API provides access to label metadata and allows developers to add or remove labels from pages.
7. Search: The API provides a search endpoint that allows developers to search for pages, spaces, and other content in Confluence.
Overall, Confluence's API provides access to a wide range of data that developers can use to build custom integrations and applications that extend the functionality of the platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: