


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by ensuring that your Convex development environment is properly set up. This involves having access to your Convex project with the necessary permissions to read data. Make sure you have your Convex project ID and authentication credentials ready for API access.
Determine which data collections or datasets you need to export from Convex. This involves listing the specific collections or tables you want to move to your local environment. Understanding the data schema and structure is crucial at this step.
Use a programming language like JavaScript, Python, or any other language you're comfortable with to write a script that fetches data from Convex. You will typically use Convex's API or SDK to authenticate and retrieve the data. Ensure you handle pagination if your dataset is large.
Once you have fetched the data, convert it into JSON format. Most programming languages have built-in libraries or functions (e.g., `JSON.stringify()` in JavaScript or `json.dumps()` in Python) to handle this conversion. Ensure that the JSON structure accurately represents the data schema.
Create a new file on your local machine where the JSON data will be stored. You can use standard file operations in your chosen programming language to create and write data to a file. For example, in Python, you can use `open()` and `write()`, and in JavaScript, you can use the `fs` module.
Write the JSON formatted data into the newly created local file. Make sure to handle any potential errors during this process, such as issues with file permissions or disk space. Ensure that the data is correctly written and the file is properly closed after the operation.
Finally, verify that the data has been accurately transferred and stored in your local JSON file. You can do this by reading the JSON file back into your script and checking if the data matches what is in the Convex environment. This step ensures that the data transfer process was successful and complete.
By following these steps, you can efficiently move data from a Convex development environment to a local JSON file without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Convex is a server less infrastructure company that has built the worldwide state management platform for web developers. Our mission is to basically change how software is formed on the Internet and who gets to form it. We aim to empower teams, large or small, to build fast, reliable, and dependable dynamic systems at scale. Convex has a great vision for the future so that developers can focus on building application code and leverage that remove the need for thinking about storage, execution, sync, queuing, or workflow.
Convex.dev's API provides access to a wide range of data related to the cryptocurrency market. The following are the categories of data that can be accessed through the API:
1. Market data: This includes real-time and historical data on cryptocurrency prices, trading volumes, market capitalization, and other market indicators.
2. Blockchain data: This includes data on transactions, blocks, and addresses on various blockchain networks.
3. Exchange data: This includes data on trading pairs, order books, and trading volumes on various cryptocurrency exchanges.
4. News data: This includes real-time news articles and updates related to the cryptocurrency market.
5. Social media data: This includes data on social media sentiment and activity related to various cryptocurrencies.
6. Technical analysis data: This includes data on technical indicators, chart patterns, and other technical analysis tools used by traders.
7. Fundamental analysis data: This includes data on the underlying fundamentals of various cryptocurrencies, such as their technology, adoption, and use cases.
Overall, Convex.dev's API provides a comprehensive set of data that can be used by traders, investors, and researchers to gain insights into the cryptocurrency market.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: