Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, log in to your Dremio account. Navigate to the dataset you wish to export and create the required SQL query to retrieve your desired data. Ensure the query returns the exact columns and rows you need in Google Sheets.
Once your query is ready, execute it in Dremio. After the results are displayed, use Dremio's export feature to download the query results as a CSV file. This is typically done by selecting an export option in the query result window and choosing CSV as the format.
Open the exported CSV file in a spreadsheet application like Microsoft Excel or Google Sheets itself. Review the data for any formatting issues, such as unwanted headers or blank rows, and make necessary adjustments to ensure the data is clean and ready for upload.
Go to Google Sheets (https://sheets.google.com) and create a new spreadsheet. This will serve as the destination for your Dremio data. Give the spreadsheet a meaningful name that reflects the contents of the data.
In your new spreadsheet, navigate to the "File" menu, then select "Import." Choose "Upload" and select the CSV file you downloaded from Dremio. Follow the prompts to import the data, ensuring you select the appropriate options for delimiter, import location, etc.
After importing, review the data in your Google Sheet to ensure it appears correctly. Adjust column widths, apply formatting, and freeze headers as necessary to make the data easier to read and work with.
For regular updates, consider creating a script using Google Apps Script to automate the process of importing a new CSV file into your Google Sheet. This involves writing a small script that can fetch the CSV file from a specified location and update the spreadsheet automatically. This step requires some programming knowledge but can significantly streamline future data transfers.
By following these steps, you can manually transfer data from Dremio to Google Sheets without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Dremio is a data-as-a-service platform that enables businesses to access and analyze their data faster and more efficiently. It provides a self-service data platform that connects to various data sources, including cloud storage, databases, and data lakes, and allows users to query and analyze data using familiar tools like SQL and BI tools. Dremio's unique approach to data processing, called Data Reflections, accelerates query performance by automatically creating optimized copies of data in memory. This allows users to get insights from their data in real-time, without the need for complex data pipelines or data warehousing. Dremio also provides enterprise-grade security and governance features to ensure data privacy and compliance.
Dremio's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as data from relational databases.
2. Semi-structured data: This includes data that has some structure, but is not organized into tables, such as JSON or XML data.
3. Unstructured data: This includes data that has no predefined structure, such as text documents, images, and videos.
4. Big data: This includes large volumes of data that cannot be processed using traditional data processing tools, such as Hadoop and Spark.
5. Streaming data: This includes real-time data that is generated continuously, such as data from IoT devices or social media feeds.
6. Cloud data: This includes data that is stored in cloud-based services, such as Amazon S3 or Microsoft Azure.
Overall, Dremio's API provides access to a wide range of data types, making it a powerful tool for data integration and analysis.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: