

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Everhour account. Navigate to the section containing the data you want to export, such as projects, time entries, or reports. Use the export function provided by Everhour, typically found in the report section. Export your data in a CSV format, as this is a widely compatible format with Google Sheets.
Once you initiate the export, Everhour will generate a CSV file. Download this file to your computer. Make sure to save it in a location that is easy to access, such as your desktop or a dedicated folder for data exports.
Open your web browser and go to Google Sheets. Log into your Google account if you are not already signed in. Create a new Google Sheet by clicking on the "+ Blank" option or open an existing sheet where you wish to import the data.
In the Google Sheets menu, click on "File" > "Import." In the import window, select "Upload" and then "Select a file from your device." Navigate to the location where you saved the CSV file from Everhour, select it, and click "Open." Google Sheets will upload the file and prompt you with import options.
In the import options dialog, choose how you want to import the CSV data. Typically, you can choose "Replace current sheet" to overwrite the current sheet or "Insert new sheet(s)" to add a new sheet with the imported data. Ensure the "Detect automatically" option is selected for separator type to correctly parse the CSV file. Click "Import data" to proceed.
Once the data is imported into Google Sheets, review it to ensure all entries are correctly formatted and no data is missing. Check for any discrepancies or formatting issues, such as date formats or numeric values, and clean the data as necessary to ensure accuracy.
After verifying the data, save your Google Sheet by naming it appropriately using the "File" > "Rename" option. If you need to share the data with others, click on "Share" in the top-right corner, set the sharing permissions, and invite collaborators via email. This allows team members to view or edit the data as needed.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Everhour is a time tracking and project management tool that helps businesses and teams to manage their time more efficiently. It integrates with popular project management tools like Asana, Trello, and Basecamp, allowing users to track time spent on tasks and projects directly from those platforms. Everhour also offers features like budget tracking, invoicing, and reporting, giving businesses a comprehensive view of their time and project management. With Everhour, teams can easily collaborate, manage their workload, and stay on top of deadlines, ultimately improving productivity and profitability.
Everhour's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Everhour's API:
1. Time tracking data: This includes data related to the time spent on tasks, projects, and clients.
2. Project management data: This includes data related to projects, tasks, and subtasks, such as their status, due dates, and assignees.
3. User data: This includes data related to users, such as their name, email address, and role.
4. Billing data: This includes data related to billing, such as the amount billed, the currency used, and the payment status.
5. Reporting data: This includes data related to reports, such as the type of report, the date range, and the data included in the report.
6. Integration data: This includes data related to integrations with other tools, such as the name of the integration, the status, and the configuration settings.
Overall, Everhour's API provides a comprehensive set of data that can be used to track time, manage projects, and analyze performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: