Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by setting up a Facebook Developer Account if you haven't already. Navigate to the Facebook Developers website, create an account, and set up a new app. This app will provide you with the necessary credentials and permissions to access Facebook Page data via the Graph API.
Within your Facebook Developer app, navigate to the 'Tools' section and generate an access token. Ensure that this token has the necessary permissions such as `pages_read_engagement` and `pages_read_user_content` to access the data from the Facebook Pages you manage.
Use the Facebook Graph API to query the data you need from your Facebook Pages. The Graph API Explorer tool can be useful for testing your queries. You can retrieve various data points, such as posts, comments, and insights, using HTTP requests to endpoints like `/{page-id}/posts`.
Write a script in Python, utilizing libraries like `requests` to make API calls to Facebook. Extract the data and save it locally in a structured format, such as CSV or JSON. This script should handle pagination if you have large datasets.
Access your Databricks workspace and set up a new cluster if necessary. Ensure that you have sufficient storage and processing resources provisioned. Familiarize yourself with the Databricks File System (DBFS), which you will use to store your data files.
Use the Databricks CLI or the UI to upload the extracted data files from your local machine to DBFS. This can be done by navigating to the 'Data' tab in Databricks and selecting 'Upload Data' to import your local files into the DBFS.
Create a notebook in Databricks to load and process the data from DBFS into your Lakehouse. Use Spark SQL or PySpark to read the CSV/JSON files and transform them as needed. Finally, write the transformed data into Delta Lake tables for efficient querying and analytics.
By following these steps, you can effectively move data from Facebook Pages to a Databricks Lakehouse without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Facebook Pages permits businesses to promote their brand, grow their audience and start conversations with customers and people interested in learning more. A Facebook Page is where customers go to discover and engage with your business. Setting up a Page is simple and free, and it looks great on both desktop. A Facebook page is a public profile specifically created for businesses, brands, celebrities, causes, and other organizations. It provides a way for businesses and other organizations to interact with rather than just advertise to potential.
The Facebook Pages API provides access to a wide range of data related to Facebook Pages. The following are the categories of data that can be accessed through the API:
1. Page Information: This includes basic information about the page such as name, category, description, and contact information.
2. Posts: This includes all the posts made by the page, including status updates, photos, videos, and links.
3. Comments: This includes all the comments made on the page's posts.
4. Reactions: This includes the number of likes, loves, wows, hahas, sads, and angries on the page's posts.
5. Insights: This includes data related to the page's performance, such as reach, engagement, and follower demographics.
6. Messages: This includes all the messages sent to the page by users.
7. Reviews: This includes all the reviews left by users on the page.
8. Events: This includes all the events created by the page.
9. Videos: This includes all the videos uploaded by the page.
10. Photos: This includes all the photos uploaded by the page.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: