Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by navigating to your Facebook Page and accessing Insights. This section contains the data you can extract, such as likes, reach, and engagement metrics. Go to the “Insights” tab on your Facebook Page, and select the specific data you wish to download.
Facebook allows you to download Insights data as a CSV file. Choose the “Export Data” option and specify the date range and type of data you need (Post data, Page data, etc.). Ensure you select the CSV format for compatibility.
Open the downloaded CSV file in a spreadsheet application like Excel or Google Sheets. Review the data to ensure it is complete and accurate. Remove any unnecessary columns or rows and standardize the data formats if needed, such as converting dates to a consistent format.
If you haven’t already, install DuckDB on your system. DuckDB is a columnar database management system that can be installed using package managers or directly from its GitHub releases. Follow the installation instructions specific to your operating system.
Initialize a new DuckDB database or connect to an existing one. You can do this by running DuckDB in your terminal or through a Python environment if you prefer using DuckDB's Python API. Create a new database file by using:
```
duckdb mydatabase.db
```
Use DuckDB's SQL interface to load the CSV data into the database. In the DuckDB shell or using a Python script, execute the following command:
```sql
COPY my_table FROM 'path/to/your/data.csv' (DELIMITER ',', HEADER);
```
Ensure that `my_table` matches the schema you intend to use, or create a new table with the necessary structure before loading.
Once the data is loaded into DuckDB, run a few queries to ensure everything has been imported correctly. Check for data integrity, such as verifying row counts and sampling data points to ensure consistency with the original CSV. Use SQL commands to inspect and validate your data:
```sql
SELECT * FROM my_table LIMIT 10;
```
By following these steps, you will manually transfer data from Facebook Pages to DuckDB without relying on third-party connectors or integrations, allowing for greater control over the data handling process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Facebook Pages permits businesses to promote their brand, grow their audience and start conversations with customers and people interested in learning more. A Facebook Page is where customers go to discover and engage with your business. Setting up a Page is simple and free, and it looks great on both desktop. A Facebook page is a public profile specifically created for businesses, brands, celebrities, causes, and other organizations. It provides a way for businesses and other organizations to interact with rather than just advertise to potential.
The Facebook Pages API provides access to a wide range of data related to Facebook Pages. The following are the categories of data that can be accessed through the API:
1. Page Information: This includes basic information about the page such as name, category, description, and contact information.
2. Posts: This includes all the posts made by the page, including status updates, photos, videos, and links.
3. Comments: This includes all the comments made on the page's posts.
4. Reactions: This includes the number of likes, loves, wows, hahas, sads, and angries on the page's posts.
5. Insights: This includes data related to the page's performance, such as reach, engagement, and follower demographics.
6. Messages: This includes all the messages sent to the page by users.
7. Reviews: This includes all the reviews left by users on the page.
8. Events: This includes all the events created by the page.
9. Videos: This includes all the videos uploaded by the page.
10. Photos: This includes all the photos uploaded by the page.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: