How to load data from GitHub to Apache Iceberg

Learn how to use Airbyte to synchronize your GitHub data into Apache Iceberg within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a GitHub connector in Airbyte

Connect to GitHub or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Apache Iceberg for your extracted GitHub data

Select Apache Iceberg where you want to import data from your GitHub source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the GitHub to Apache Iceberg in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner
Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Rupak Patel
Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync GitHub to Apache Iceberg Manually

Begin by cloning the GitHub repository that contains the data files you wish to move to Apache Iceberg. Use the `git clone` command with the repository URL to download it to your local machine. This allows you to work with the data files directly.

```bash
git clone https://github.com/yourusername/your-repo.git
```

Navigate into the cloned repository directory and identify the data files you intend to move. Ensure these files are in a format supported by Apache Iceberg (e.g., CSV, Parquet, Avro). If necessary, convert the files to a supported format using a script or command-line tool.

```bash
cd your-repo
# Convert or prepare files here if needed
```

Set up Apache Iceberg on your local environment. Install Apache Iceberg and any dependencies required to run it, such as Apache Spark or Flink, depending on your processing needs. You can do this using package managers like pip for Python or maven for Java.

```bash
# Example for Spark with Iceberg
pip install pyspark
pip install iceberg-spark-runtime
```

Configure an Iceberg catalog to manage your tables. This involves setting up a metastore (such as Hive Metastore) or using a file-based catalog. Define the catalog properties in your Spark or Flink configuration.

```python
spark.sql("CREATE CATALOG my_catalog USING 'hive'")
```

Use Spark or Flink to read the data files and write them into an Apache Iceberg table. Create a DataFrame from your data files, apply any necessary transformations, and then write the data to an Iceberg table using the configured catalog.

```python
df = spark.read.format("csv").option("header", "true").load("path/to/datafile.csv")
df.write.format("iceberg").save("my_catalog.my_db.my_table")
```

Once the data is written, verify that it was successfully transferred to Iceberg by querying the table. Use Spark SQL or Flink SQL to run a few basic queries and ensure the data looks as expected.

```python
spark.sql("SELECT FROM my_catalog.my_db.my_table").show()
```

After verifying the data, clean up any temporary files or configurations you no longer need. Document the process you followed, including any scripts or commands used, to ensure reproducibility and ease of future data migrations.

```bash
# Remove any temporary files
rm -rf /path/to/temporary/files
```

By following these steps, you can effectively move data from a GitHub repository to an Apache Iceberg table without relying on third-party connectors or integrations.

How to Sync GitHub to Apache Iceberg Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

GitHub is a renowned and respected development platform that provides code hosting services to developers for building software for both open source and private projects. It is a heavily trafficked platform where users can store and share code repositories and obtain support, advice, and help from known and unknown contributors. Three features in particular—pull request, fork, and merge—have made GitHub a powerful ally for developers and earned it a place as a (developers’) household name.

GitHub's API provides access to a wide range of data related to repositories, users, organizations, and more. Some of the categories of data that can be accessed through the API include:  

- Repositories: Information about repositories, including their name, description, owner, collaborators, issues, pull requests, and more.

- Users: Information about users, including their username, email address, name, location, followers, following, organizations, and more.

- Organizations: Information about organizations, including their name, description, members, repositories, teams, and more.

- Commits: Information about commits, including their SHA, author, committer, message, date, and more.

- Issues: Information about issues, including their title, description, labels, assignees, comments, and more.

- Pull requests: Information about pull requests, including their title, description, status, reviewers, comments, and more.

- Events: Information about events, including their type, actor, repository, date, and more.  

Overall, the GitHub API provides a wealth of data that can be used to build powerful applications and tools for developers, businesses, and individuals.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up GitHub to Apache Iceberg as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from GitHub to Apache Iceberg and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter