

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from GitLab. This can be done through GitLab's web interface by navigating to the project you wish to export. In the project settings, look for the "Export project" option, which will package the repository, issues, merge requests, and other metadata into a downloadable file, typically in a `.tar.gz` format.
After downloading the exported file, extract it on your local machine. Use a command like `tar -xvzf .tar.gz` to unpack the contents. This will give you access to the raw data files and directories, which often include JSON, CSV, or other format files containing the required data.
Once extracted, review the data structure and format it as needed for compatibility with Databricks. Convert or clean these files using scripting languages such as Python or Shell scripts, ensuring the data aligns with the schema you intend to use in Databricks. This might involve converting JSON to CSV, flattening data structures, or cleaning up data entries.
To interact with Databricks from your local environment, install the Databricks Command Line Interface (CLI). You can do this using pip with the command `pip install databricks-cli`. The CLI will facilitate file uploads to the Databricks environment.
Configure the Databricks CLI by setting up authentication. Use the command `databricks configure --token` and provide the necessary information, such as your Databricks host URL and a personal access token, which can be generated from your Databricks account settings.
Use the Databricks CLI to upload your transformed data files to the Databricks File System (DBFS). This can be done using the command `databricks fs cp dbfs:/` for each file or directory you need to move. Ensure all files are correctly placed in the desired directory within DBFS.
Finally, within your Databricks workspace, create a notebook to load the data from DBFS into the Lakehouse. Use Spark DataFrame operations to read the files you uploaded. For example, use `spark.read.csv("dbfs://.csv")` or `spark.read.json()` depending on your file format. Transform and save the DataFrame as a table in Databricks Lakehouse to begin using the data.
By following these steps, you can effectively move data from GitLab to Databricks Lakehouse without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
GitLab is web-based Git repository manager. Whereas GitHub emphasizes infrastructure performance, GitLab’s focus is a features-oriented system. As an open-source collaborative platform, it enables developers to create code, review work, and deploy codebases collaboratively. It offers wiki, code reviews, built-in CI/CD, issue-tracking features, and much more.
GitLab's API provides access to a wide range of data related to a user's GitLab account and projects. The following are the categories of data that can be accessed through GitLab's API:
1. User data: This includes information about the user's profile, such as name, email, and avatar.
2. Project data: This includes information about the user's projects, such as project name, description, and visibility.
3. Repository data: This includes information about the user's repositories, such as repository name, description, and access level.
4. Issue data: This includes information about the user's issues, such as issue title, description, and status.
5. Merge request data: This includes information about the user's merge requests, such as merge request title, description, and status.
6. Pipeline data: This includes information about the user's pipelines, such as pipeline status, duration, and job details.
7. Job data: This includes information about the user's jobs, such as job status, duration, and artifacts.
8. Group data: This includes information about the user's groups, such as group name, description, and visibility.
Overall, GitLab's API provides access to a comprehensive set of data that can be used to automate and streamline various aspects of a user's GitLab workflow.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: