How to load data from Gitlab to Google Sheets

Learn how to use Airbyte to synchronize your Gitlab data into Google Sheets within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Gitlab connector in Airbyte

Connect to Gitlab or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Google Sheets for your extracted Gitlab data

Select Google Sheets where you want to import data from your Gitlab source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Gitlab to Google Sheets in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner
Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Rupak Patel
Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Gitlab to Google Sheets Manually

Begin by accessing the GitLab instance you wish to extract data from. Navigate to the GitLab API documentation to understand the endpoints and data structures. Ensure you have the necessary permissions and an API access token, which you can create from the GitLab user settings under Access Tokens.

Formulate an API request to fetch the data you need. For example, if you want to retrieve project data, you would use an endpoint like `https://gitlab.com/api/v4/projects`. Use a tool like `curl` or any programming language's HTTP library to construct this request. Don’t forget to include your API token in the request headers for authentication.

Write a script in a language such as Python that can send your API request and capture the response. Use the `requests` library in Python to simplify this process. Your script should parse the JSON response and store it in a format that can be easily exported, such as a CSV file.

```python
import requests
import csv

headers = {"PRIVATE-TOKEN": "your_access_token"}
response = requests.get("https://gitlab.com/api/v4/projects", headers=headers)
data = response.json()

with open('gitlab_data.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(data[0].keys()) # Write headers
for item in data:
writer.writerow(item.values())
```

Once you have your CSV file, you may need to clean or format it to ensure compatibility with Google Sheets. Check for any special characters or formatting issues that might need correction. Make sure your CSV adheres to UTF-8 encoding to avoid any import issues.

Manually upload your CSV file to Google Drive. Navigate to your Google Drive, click on the "New" button, and select "File upload." Choose your CSV file from your local directory and upload it to Google Drive.

Open Google Sheets and create a new spreadsheet. Use the "File" menu, select "Import," and choose "Upload." Select the CSV file from your Google Drive. When prompted, select "Replace spreadsheet" to import the CSV data into your Google Sheets directly, or append to an existing sheet if required.

If you need to perform this operation regularly, consider automating it using Google Apps Script. Write a script that can download the CSV from Google Drive and import it into the desired Google Sheet. Schedule this script to run at your required frequency using Google Apps Script’s trigger functionality.

```javascript
function importCSVFromDrive() {
var file = DriveApp.getFilesByName('gitlab_data.csv').next();
var csvData = Utilities.parseCsv(file.getBlob().getDataAsString());
var sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();
sheet.clear(); // Clear existing content
sheet.getRange(1, 1, csvData.length, csvData[0].length).setValues(csvData);
}
```

Set a time-driven trigger to execute this script as often as needed.

How to Sync Gitlab to Google Sheets Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

GitLab is web-based Git repository manager. Whereas GitHub emphasizes infrastructure performance, GitLab’s focus is a features-oriented system. As an open-source collaborative platform, it enables developers to create code, review work, and deploy codebases collaboratively. It offers wiki, code reviews, built-in CI/CD, issue-tracking features, and much more.

GitLab's API provides access to a wide range of data related to a user's GitLab account and projects. The following are the categories of data that can be accessed through GitLab's API:  

1. User data: This includes information about the user's profile, such as name, email, and avatar.  

2. Project data: This includes information about the user's projects, such as project name, description, and visibility.  

3. Repository data: This includes information about the user's repositories, such as repository name, description, and access level.  

4. Issue data: This includes information about the user's issues, such as issue title, description, and status.  

5. Merge request data: This includes information about the user's merge requests, such as merge request title, description, and status.  

6. Pipeline data: This includes information about the user's pipelines, such as pipeline status, duration, and job details.  

7. Job data: This includes information about the user's jobs, such as job status, duration, and artifacts.  

8. Group data: This includes information about the user's groups, such as group name, description, and visibility.  

Overall, GitLab's API provides access to a comprehensive set of data that can be used to automate and streamline various aspects of a user's GitLab workflow.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up GitLab to Google Sheets as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from GitLab to Google Sheets and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter