Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, ensure you have a suitable development environment. Install a programming language SDK that supports HTTP requests, such as Python or Node.js. Also, make sure you have the necessary libraries for making HTTP requests, such as `requests` for Python or `axios` for Node.js.
Obtain your API key from Gridly. Navigate to your Gridly account settings to generate an API key if you haven"t already. Familiarize yourself with the Gridly API documentation to understand how to authenticate requests and fetch data.
Write a script to connect to the Gridly API using your API key. Use the API to retrieve the data you need. For instance, if using Python, you might use the `requests` library to make a GET request to the appropriate Gridly endpoint, ensuring to include your API key in the headers for authentication.
Depending on your use case, you might need to transform the data into a format suitable for Google Pub/Sub. This might involve converting data into JSON format if it isn't already. Use your chosen programming language to loop over and modify the data as needed.
Log into your Google Cloud Platform account. Create a new project if you don"t have one. Enable the Pub/Sub API for your project. Also, create a service account with the appropriate Pub/Sub permissions and download the JSON key file for authentication purposes.
Use the Google Cloud client libraries to authenticate and connect to Google Pub/Sub. For instance, in Python, you can use the `google-cloud-pubsub` library. Load the service account JSON key file to authenticate your requests. Initialize a Pub/Sub client in your script.
Create a Pub/Sub topic in your GCP project where you want to send the data. Use your script to publish the transformed data to this topic. In Python, this involves using the `PublisherClient` to send messages to your specified topic. Ensure each message is correctly formatted and handle any potential errors or exceptions during publishing.
By following these steps, you can effectively move data from Gridly to Google Pub/Sub without relying on third-party connectors or integrations, maintaining direct control over the data flow.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Gridly is a cloud-based headless CMS for multilingual game-as-a-service projects with an open API, browser-based spreadsheet UI, and built-in functions to handle localization and frequent updates. It is a collaborative system for users of any technical ability. Gridly is spreadsheet for multi-language content tailor-made for games and digital products. By connecting development, design, and localization teams and their tools, Gridly serves as a single source of truth for faster content updates. Gridly improves collaboration and streamlines content management and localization for your games or apps.
Gridly's API provides access to various types of data that can be used to manage and organize content for web and mobile applications. The following are the categories of data that Gridly's API gives access to:
1. Content data: This includes all the content that is stored in Gridly, such as text, images, videos, and audio files.
2. Metadata: This includes information about the content, such as the date it was created, the author, and any tags or categories associated with it.
3. User data: This includes information about the users who access the content, such as their login credentials, preferences, and activity history.
4. Analytics data: This includes data about how users interact with the content, such as page views, clicks, and engagement metrics.
5. Configuration data: This includes settings and configurations for the application, such as user permissions, access controls, and integration with other systems.
Overall, Gridly's API provides a comprehensive set of data that can be used to build and manage content-rich applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





