How to load data from IBM Db2 to CSV File Destination

Learn how to use Airbyte to synchronize your IBM Db2 data into CSV File Destination within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a IBM Db2 connector in Airbyte

Connect to IBM Db2 or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up CSV File Destination for your extracted IBM Db2 data

Select CSV File Destination where you want to import data from your IBM Db2 source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the IBM Db2 to CSV File Destination in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that supports both incremental and full refreshes, for databases of any size.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Jean-Mathieu Saponaro
Data & Analytics Senior Eng Manager

"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Alexis Weill
Data Lead

“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria.
The value of being able to scale and execute at a high level by maximizing resources is immense”

Learn more

How to Sync IBM Db2 to CSV File Destination Manually

Prerequisites:

  • Ensure you have the necessary permissions to access the DB2 database and read the data you want to export.
  • Install the IBM Data Server Client or IBM Data Server Driver if you’re working from a machine that does not have DB2 installed.
  • Familiarize yourself with the DB2 command line processor (CLP) as you will be using it to interact with the database.

  • On Windows, you can do this by searching for ‘DB2 Command Line Processor’ in the start menu.
  • On Unix/Linux, open a terminal session and type db2.

Use the CONNECT command to connect to your DB2 database:

CONNECT TO your_database USER your_username USING your_password

Replace your_database, your_username, and your_password with your actual database name, username, and password.

Use the EXPORT command to write data to a CSV file:

EXPORT TO your_file.csv OF DEL MODIFIED BY NOCHARDEL
SELECT *
FROM your_table

Replace your_file.csv with the desired path and filename for your CSV file, and your_table with the name of the table you want to export. The OF DEL option specifies that you are exporting in a delimited format, and MODIFIED BY NOCHARDEL tells DB2 not to use character delimiters (if you want to include them, simply remove this option).

After running the EXPORT command, DB2 will provide messages indicating the success or failure of the operation. Review these messages to ensure that the data was exported successfully. If there are errors, address them accordingly.

Once the export is complete, disconnect from the database:

CONNECT RESET

Navigate to the location of the exported CSV file and open it with a text editor or a spreadsheet program like Microsoft Excel to verify that the data has been correctly exported.

If you need to change the delimiter or include additional options like enclosing fields with quotes, you can modify the EXPORT command:

EXPORT TO your_file.csv OF DEL MODIFIED BY NOCHARDEL COLDEL, CHARDEL" DECDEL.
SELECT *
FROM your_table

In this example, COLDEL, sets the column delimiter to a comma, CHARDEL" sets the character delimiter to double quotes, and DECDEL. sets the decimal delimiter to a period.

Tips:

  • If you have a large amount of data, consider exporting in chunks to avoid memory issues or to make the process more manageable.
  • Ensure that the CSV file path is accessible and has the necessary write permissions.
  • If you’re running these commands in a script, make sure to handle any potential errors and log the output for troubleshooting.

How to Sync IBM Db2 to CSV File Destination Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Specializing in the development and maintenance of Android, iOS, and Web applications, DB2’s AI technology offers fast insights, flexible data management, and secure data movement to businesses globally through its IBM Cloud Pak for Data platform. Companies rely on DB2’s AI-powered insights and secure platform and save money with its multimodal capability, which eliminates the need for unnecessary replication and migration of data. Additionally, DB2 is convenient and will run on any cloud vendor.

IBM Db2 provides access to a wide range of data types, including:  

1. Relational data: This includes tables, views, and indexes that are organized in a relational database management system (RDBMS).  

2. Non-relational data: This includes data that is not organized in a traditional RDBMS, such as NoSQL databases, JSON documents, and XML files.  

3. Time-series data: This includes data that is collected over time and is typically used for analysis and forecasting, such as sensor data, financial data, and weather data.  

4. Geospatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.  

5. Graph data: This includes data that is organized in a graph structure, such as social networks, recommendation engines, and knowledge graphs.  

6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets, feature vectors, and model parameters.  

Overall, IBM Db2's API provides access to a diverse range of data types, making it a powerful tool for data management and analysis.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up IBM Db2 to CSV File as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from IBM Db2 to CSV File and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter