Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the IP2WHOIS service to extract the required data. This can be achieved by using their API to perform WHOIS lookups. Use an HTTP client in a programming language of your choice (e.g., Python's `requests` library) to send requests and retrieve the data in a structured format, such as JSON or CSV.
Once you have the data from IP2WHOIS, parse it to extract relevant fields. Clean the data to ensure consistency, handle missing values, and correct any discrepancies. You might use a data processing library like Pandas in Python to achieve this efficiently.
Before moving data into Apache Iceberg, define the schema for your Iceberg table. This involves specifying the columns, data types, and any partitioning strategy you wish to implement. The schema should align with the data structure extracted from IP2WHOIS.
Set up your Apache Iceberg environment. Install Apache Iceberg and configure it to connect to your chosen storage backend (e.g., HDFS, S3, or local file system). Ensure that you have the necessary permissions and access to the storage location where the Iceberg tables will reside.
Convert the cleaned IP2WHOIS data into a format compatible with Apache Iceberg, such as Parquet or Avro. This transformation process can be done using data processing tools or programming libraries that support these formats.
Load the transformed data into the Apache Iceberg table. Use a supported processing engine such as Apache Spark or Apache Flink to write the data into the Iceberg table. Ensure that the data is written in compliance with the defined schema and partitioning strategy.
After the data has been ingested, verify that it has been correctly loaded into the Apache Iceberg table. Perform data validation checks to ensure the completeness and accuracy of the data. Use SQL queries or data processing frameworks to query the Iceberg table and confirm that the data matches expectations.
By following these steps, you can successfully move data from IP2WHOIS to Apache Iceberg without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
IP2WHOIS is a free WHOIS Query (Space query) instrument that assists clients with really looking at WHOIS data for a specific space, for example, doled out proprietor contact data, enlistment center data, registrant data, area, and significantly more. WHOIS is a data set that comprises of required data about an enlisted space, or all the more definitively, the enrolled clients of a Web asset. A WHOIS data query is a more extensive scope of data on a space name, an IP address block, and the space accessibility status.
IP2Whois's API provides access to a wide range of data related to internet domains and IP addresses. The following are the categories of data that can be accessed through the API:
- Domain information: This includes the domain name, creation and expiration dates, registrar information, and contact details of the domain owner.
- IP address information: This includes the IP address, location, ISP, and other network-related information.
- DNS information: This includes the DNS server information, MX records, and other DNS-related data.
- WHOIS information: This includes the WHOIS record of the domain, which contains information about the domain owner, registrar, and other administrative details.
- Geolocation data: This includes the latitude and longitude coordinates of the IP address, as well as the city, region, and country where the IP address is located.
- Network information: This includes information about the network infrastructure, such as the autonomous system number (ASN) and the network range.
- Abuse contact information: This includes the contact details of the abuse department of the ISP or hosting provider associated with the IP address or domain.
Overall, IP2Whois's API provides a comprehensive set of data that can be used for various purposes, such as cybersecurity, marketing, and research.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





