Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by installing Apache Kafka on your system. You can download Kafka from the official Apache Kafka website. Follow the installation instructions specific to your operating system. Once installed, set up your Kafka environment by configuring the `server.properties` and `zookeeper.properties` files as needed. Start both the Zookeeper and Kafka server instances.
Use the Kafka command-line utility to create a topic that will hold the data from your iterable. Open your terminal and navigate to the Kafka directory. Use the following command to create a topic:
```bash
bin/kafka-topics.sh --create --topic your_topic_name --bootstrap-server localhost:9092 --partitions 1 --replication-factor 1
```
Replace `your_topic_name` with a suitable name for your topic.
Identify the iterable data source you want to move to Kafka. This could be a list, set, or any iterable Python object. Ensure that the data is in a format that can be serialized and sent to Kafka, such as JSON strings.
You need a Kafka client library in Python to interact with Kafka. Install the `kafka-python` library using pip:
```bash
pip install kafka-python
```
This library will help you produce messages to your Kafka topic from your iterable data.
Create a Python script that iterates over your data and sends each item to the Kafka topic. Here's a basic example:
```python
from kafka import KafkaProducer
import json
# Initialize the producer
producer = KafkaProducer(bootstrap_servers='localhost:9092',
value_serializer=lambda v: json.dumps(v).encode('utf-8'))
# Example iterable data
data = [{"key1": "value1"}, {"key2": "value2"}, {"key3": "value3"}]
# Send data to Kafka
for item in data:
producer.send('your_topic_name', value=item)
# Close the producer connection
producer.close()
```
Ensure to replace `'your_topic_name'` with the name of your Kafka topic.
Execute the Python script you wrote in the previous step. This script will iterate over your iterable data, serialize it, and send each item as a message to the specified Kafka topic.
To ensure that the data has been successfully sent to Kafka, use the Kafka console consumer to read messages from your topic. Run the following command:
```bash
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic your_topic_name --from-beginning
```
This will display the messages in your topic, allowing you to verify that all data from your iterable has been correctly transferred to Kafka.
By following these steps, you can move data from an iterable to Kafka without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Iterable is a marketing platform designed to help businesses grow. Its automated platform enables businesses to measure and optimize customer interactions, with the ability to easily create and execute cross-channel campaigns. Through in-app notifications, email, SMS, web and mobile push, and social media integrations, Iterable powers the entire customer engagement lifecycle, throughout all stages of the customer journey.
Iterable's API provides access to a wide range of data related to customer engagement and marketing campaigns. The following are the categories of data that can be accessed through Iterable's API:
1. User data: This includes information about individual users such as their email address, name, location, and other demographic information.
2. Campaign data: This includes information about marketing campaigns such as email campaigns, push notifications, and SMS campaigns. It includes data on the number of messages sent, open rates, click-through rates, and conversion rates.
3. Event data: This includes data on user behavior such as website visits, product purchases, and other actions taken by users.
4. List data: This includes information about the lists of users that have been created in Iterable, including the number of users in each list and their engagement history.
5. Template data: This includes information about the email templates and other marketing materials used in campaigns, including their design, content, and performance metrics.
6. Analytics data: This includes data on the performance of marketing campaigns, including metrics such as revenue generated, customer lifetime value, and return on investment.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: