

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by configuring a Jenkins job to extract the required data. This can be done by writing a script or using Jenkins' built-in capabilities to gather logs, test results, or any specific data you need. Configure the job to export this data into a structured format like CSV or JSON, which can easily be processed later.
Once you have extracted the data, ensure that it is saved to the Jenkins workspace. This location is where Jenkins stores all job-related files temporarily. Verify that the data file (CSV or JSON) is correctly formatted and stored in a predictable location within the workspace for easy access.
Install and configure the Google Cloud SDK on the machine where Jenkins is running. This setup will allow Jenkins to interact with Google Cloud services. Ensure you have the necessary permissions and that the SDK is authenticated with a Google Cloud account that has access to BigQuery.
Create a shell script within Jenkins that uses the `bq` command-line tool (part of the Google Cloud SDK) to transfer data from the Jenkins workspace to BigQuery. This script should specify the dataset and table where the data needs to be imported and include any necessary schema definitions if needed.
Integrate the shell script into your Jenkins job. This can be done by adding a build step to execute the shell script after the data extraction phase. This automation ensures that every time the Jenkins job runs, the data is automatically transferred to BigQuery without manual intervention.
Ensure that the Google Cloud SDK on your Jenkins machine is authenticated correctly. You can use a service account with appropriate permissions to BigQuery. Store the service account key securely and configure the environment to use this key for authentication purposes when running the `bq` commands.
After the transfer script runs, verify that the data appears correctly in BigQuery. You can use the BigQuery console to query the table and check the data integrity. Additionally, set up monitoring or logging within Jenkins to track the success or failure of data transfers, helping to quickly resolve any issues that may arise.
By following these steps, you can effectively move data from Jenkins to BigQuery without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jenkins is an open-source automation server. It helps automate parts of software development that facilitate build, test, and deployment, continuous integration, and continuous delivery. It is a server-based system that runs in servlet containers such as Apache Tomcat. It supports version control tools including AccuRev, CVS, Subversion, Git, Mercurial, Perforce, Clear Case, and RTC, and can execute arbitrary shell scripts and Windows batch commands alongside Apache Ant, Apache Maven and etc.
Jenkins is an open-source automation server that provides a wide range of APIs to access data related to the build process. The Jenkins API provides access to various types of data, including:
1. Build Data: Information about the build process, such as build status, build duration, build logs, and build artifacts.
2. Job Data: Information about the jobs, such as job status, job configuration, job parameters, and job history.
3. Node Data: Information about the nodes, such as node status, node configuration, and node availability.
4. User Data: Information about the users, such as user details, user permissions, and user activity.
5. Plugin Data: Information about the plugins, such as plugin details, plugin configuration, and plugin compatibility.
6. System Data: Information about the Jenkins system, such as system configuration, system logs, and system health.
7. Queue Data: Information about the build queue, such as queued jobs, queue status, and queue history.
Overall, the Jenkins API provides a comprehensive set of data that can be used to monitor, analyze, and optimize the build process.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: