Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Jira. You can do this by using Jira's REST API. First, generate an API token and use it with your Jira username to authenticate requests. Use the API to query the data you need, such as issues, projects, or custom fields. You can use tools like `curl` or scripts in Python or JavaScript to make these API calls and store the results in a JSON file.
Once you have the data, inspect it to ensure it meets your requirements. Use a scripting language like Python to parse the JSON data and clean any unwanted fields or transform the data into a suitable structure that Typesense can index. This may involve flattening nested objects or converting data types as needed.
Plan and define the schema for your Typesense collection. A schema specifies the fields and their data types that Typesense will index. Think about the fields you want to be searchable and facetable, and create a JSON schema that reflects these requirements.
If you haven't already, set up a Typesense server. You can run it locally using Docker, or deploy it on a cloud server. Follow the official Typesense documentation for installation instructions. Ensure that your server is running and accessible.
Use the Typesense API to create a collection based on the schema you defined in Step 3. You can do this using a tool like `curl` or a script in a programming language. The command will define the collection and its fields on the Typesense server.
With the collection ready, use the Typesense API to import your transformed data. You can do this in batches to ensure efficient data transfer. Write a script that reads the transformed JSON data and sends it to Typesense using the `/documents/import` endpoint, handling any errors that may occur during this process.
After loading the data, verify that it has been indexed correctly. Use the Typesense API to perform search queries and ensure that the results are accurate and meet your expectations. Check for any discrepancies and make necessary adjustments to the data or schema if needed.
By following these steps, you can manually move data from Jira to Typesense without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Jira is an issue tracking software by Atlassian that assists developers in bug tracking and agile project management. With software support throughout the entire development process, from planning to tracking, to the final release, and reports based on real-time data to improve team performance, Jira is the go-to software development tool for agile teams.
Jira's API provides access to a wide range of data related to project management and issue tracking. The following are the categories of data that can be accessed through Jira's API:
1. Issues: This includes all the information related to the issues such as issue type, status, priority, description, comments, attachments, and more.
2. Projects: This includes information about the projects such as project name, description, project lead, and more.
3. Users: This includes information about the users such as user name, email address, and more.
4. Workflows: This includes information about the workflows such as workflow name, workflow steps, and more.
5. Custom fields: This includes information about the custom fields such as custom field name, type, and more.
6. Dashboards: This includes information about the dashboards such as dashboard name, description, and more.
7. Reports: This includes information about the reports such as report name, description, and more.
8. Agile boards: This includes information about the agile boards such as board name, board type, and more.
Overall, Jira's API provides access to a vast amount of data that can be used to improve project management and issue tracking.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





