

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, ensure that your Kafka environment is correctly set up and running. This includes having a Kafka broker and a topic from which you will read data. You can verify this by starting your Kafka server and using the Kafka CLI to list available topics.
Develop a Kafka consumer application using a programming language like Python or Java. This application will read messages from your specified Kafka topic. Use Kafka's client libraries to connect to the Kafka broker and subscribe to the topic. Ensure your application can handle message consumption efficiently.
Set up AWS SDK in your application to interact with Amazon S3. This requires configuring your AWS credentials and region settings. Ensure that your AWS IAM role or user has the necessary permissions to write to the S3 bucket. The SDK will be used to upload the data from Kafka to your S3 bucket.
Implement the logic in your consumer application to read messages from the Kafka topic. As messages are consumed, process them as needed. This may include parsing the data, transforming it into the desired format, or filtering based on specific criteria. Ensure your application can handle varying message sizes and batch processing if necessary.
After processing the Kafka messages, prepare the data for upload to S3. This could involve aggregating messages into files or converting them into a format suitable for your use case (e.g., JSON, CSV). Ensure the data is organized and named appropriately for easy retrieval from S3.
Use the AWS SDK to upload the prepared data files to your S3 bucket. Implement error handling to manage failures during the upload process. Ensure you specify the correct S3 bucket name and object key for each file. Consider implementing retries or logging mechanisms for better reliability and traceability.
Continuously monitor the performance of your Kafka consumer application and the data transfer process. Use logging and metrics to identify bottlenecks or errors. Optimize the application to handle higher loads, reduce latency, and improve error handling. Consider scaling out your application if necessary to handle increased Kafka message throughput.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Apache Kafka is an open-source distributed event streaming platform that is used to handle real-time data feeds. It is designed to handle high volumes of data and provide real-time processing and analysis of data streams. Kafka is used by many companies for various purposes such as data integration, real-time analytics, and messaging. It is highly scalable and fault-tolerant, making it a popular choice for large-scale data processing. Kafka provides a publish-subscribe model where producers publish data to topics, and consumers subscribe to those topics to receive the data. It also provides features such as data retention, replication, and partitioning to ensure data reliability and availability.
Kafka's API gives access to various types of data, including:
1. Event data: Kafka is primarily used for streaming event data, such as user actions, sensor readings, and log data.
2. Metadata: Kafka provides metadata about the topics, partitions, and brokers in a cluster.
3. Consumer offsets: Kafka tracks the offset of each message consumed by a consumer, allowing for reliable message delivery.
4. Producer metrics: Kafka provides metrics on the performance of producers, such as message send rate and error rate.
5. Consumer metrics: Kafka provides metrics on the performance of consumers, such as message consumption rate and lag.
6. Log data: Kafka stores log data for a configurable amount of time, allowing for historical analysis and debugging.
7. Administrative data: Kafka provides APIs for managing topics, partitions, and consumer groups.
Overall, Kafka's API gives access to a wide range of data related to event streaming, metadata, performance metrics, and administrative tasks.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: