

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, familiarize yourself with how to manually export data from LaunchDarkly. LaunchDarkly provides APIs that you can use to extract data like feature flags and user data. Review their API documentation to understand the endpoints, authentication, and data formats (usually JSON) you will be working with.
Set up a local environment with the necessary tools and libraries. You'll need a programming language that supports HTTP requests (e.g., Python, Node.js) and a library to handle these requests (e.g., `requests` in Python or `axios` in Node.js). This environment will allow you to write scripts to extract data from LaunchDarkly.
Write a script to authenticate and fetch data from LaunchDarkly. Use your LaunchDarkly API key to authenticate your requests. Construct HTTP GET requests to the appropriate LaunchDarkly API endpoints to retrieve the data you need. Make sure to handle paginated results if applicable and store the data in a local file or variable for processing.
Format and clean the extracted data to fit Firestore's document model. Firestore requires data to be structured as collections and documents, with each document being a set of key-value pairs. Transform your LaunchDarkly data to match this structure, ensuring that data types are compatible with Firestore's supported data types.
Install and configure the Google Cloud SDK on your local machine. Enable the Firestore API in your Google Cloud project and set up your database in Native mode. Authenticate using `gcloud auth login` and set the active project with `gcloud config set project [PROJECT_ID]`.
Use a Firestore client library for your chosen language (e.g., `google-cloud-firestore` for Python or Node.js) to create a script that inserts data into Firestore. Establish a connection to Firestore, iterate over the prepared data, and use Firestore methods to create or update documents in the appropriate collections.
Once your scripts are tested and working, consider automating the process using cron jobs (or a similar scheduler) to run the scripts at regular intervals. Additionally, implement logging within your scripts to monitor successful data transfers and capture any errors for troubleshooting. This will help maintain data consistency and reliability between LaunchDarkly and Firestore.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
LaunchDarkly enables software engineers and non-engineers to collaborate more effectively on releases by giving them the visibility they need. LaunchDarkly is a SaaS platform for developers to manage feature flags. By decoupling feature rollout and code deployment, LaunchDarkly enables developers to test their code live in production, gradually release features to groups of users, and manage flags throughout their lifecycle. This allows developers to release better software with less risk.
LaunchDarkly's API provides access to a wide range of data related to feature flags and their usage. The following are the categories of data that can be accessed through the API:
1. Feature flags: Information about the feature flags themselves, including their names, descriptions, and targeting rules.
2. Environments: Details about the environments in which the feature flags are being used, such as their names and descriptions.
3. Users: Information about the users who are interacting with the feature flags, including their user IDs and attributes.
4. Events: Data related to the events triggered by the feature flags, such as impressions, clicks, and conversions.
5. Metrics: Metrics related to the performance of the feature flags, such as error rates, latency, and throughput.
6. Projects: Information about the projects in which the feature flags are being used, including their names and descriptions.
7. Teams: Details about the teams responsible for managing the feature flags, such as their names and contact information.
Overall, LaunchDarkly's API provides a comprehensive set of data that can be used to monitor and optimize the use of feature flags in software development.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: