

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the required data from LaunchDarkly. LaunchDarkly provides APIs for accessing feature flag data, user data, and event data. Use the LaunchDarkly REST API to retrieve the necessary data in JSON format. You may need to write a script in a language such as Python or JavaScript to make HTTP GET requests to the LaunchDarkly API endpoints for the specific data you need.
Once you have the data in JSON format, transform it into a CSV format which is compatible with Snowflake loading processes. You can write a script to parse the JSON data and convert it to CSV. Libraries such as `pandas` in Python can be used to read JSON and write it into CSV efficiently.
Set up your Snowflake environment to receive the data. This involves creating a database, schema, and table(s) that match the structure of your CSV data. Use the Snowflake SQL interface to execute commands for creating the necessary database objects.
Upload the CSV files to a Snowflake stage. You can use the Snowflake web interface or the SnowSQL command-line tool to execute the PUT command, which uploads your CSV files from your local machine to a Snowflake stage. Ensure the stage is properly configured and accessible.
Use the COPY INTO command to load data from the Snowflake stage into your table. This command reads the data from your staged CSV files and inserts it into the specified table in Snowflake. Ensure the data types in your table match those in the CSV file to avoid data conversion errors.
After loading the data, verify the data integrity by running SQL queries to check for any discrepancies. Compare the row counts, sample data, and column values between the original data from LaunchDarkly and the data now residing in Snowflake to ensure completeness and accuracy.
For ongoing data transfer, automate the process using a scripting language to periodically fetch, transform, and load data from LaunchDarkly to Snowflake. Utilize cron jobs or other scheduling tools on your server to run the script at desired intervals, ensuring that your Snowflake database remains up-to-date with the latest data from LaunchDarkly.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
LaunchDarkly enables software engineers and non-engineers to collaborate more effectively on releases by giving them the visibility they need. LaunchDarkly is a SaaS platform for developers to manage feature flags. By decoupling feature rollout and code deployment, LaunchDarkly enables developers to test their code live in production, gradually release features to groups of users, and manage flags throughout their lifecycle. This allows developers to release better software with less risk.
LaunchDarkly's API provides access to a wide range of data related to feature flags and their usage. The following are the categories of data that can be accessed through the API:
1. Feature flags: Information about the feature flags themselves, including their names, descriptions, and targeting rules.
2. Environments: Details about the environments in which the feature flags are being used, such as their names and descriptions.
3. Users: Information about the users who are interacting with the feature flags, including their user IDs and attributes.
4. Events: Data related to the events triggered by the feature flags, such as impressions, clicks, and conversions.
5. Metrics: Metrics related to the performance of the feature flags, such as error rates, latency, and throughput.
6. Projects: Information about the projects in which the feature flags are being used, including their names and descriptions.
7. Teams: Details about the teams responsible for managing the feature flags, such as their names and contact information.
Overall, LaunchDarkly's API provides a comprehensive set of data that can be used to monitor and optimize the use of feature flags in software development.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: